module ghyper; % Generalized Hypergeometric Functions.
% Author : Victor Adamchik, Byelorussian University Minsk, Byelorussia.
% Major modifications by: Winfried Neun, ZIB Berlin.
% Oct 22, 2001, hypergeometric({a,b},{0},z) returns
% unevaluated (without error) as requested by Francis Wright
put('GHF,'simpfn,'simpGHF)$
symbolic procedure simpGHF u;
if null cddr u then
rerror('specialf,125,
"WRONG NUMBER OF ARGUMENTS TO GHF-FUNCTION")
else
if or(not numberp car u,not numberp cadr u) then
rerror('specialf,126,"INVALID AS INTEGER")
else
begin scalar vv,v;
v:=redpar1(cddr u,car u);
vv:=redpar1(cdr v,cadr u);
if null cddr vv then return
GHFsq(list(car u,cadr u),listsq car v,
listsq car vv, simp cadr vv);
return rerror ('specialf,127,
"WRONG NUMBER OF ARGUMENTS TO GHF-FUNCTION");
end$
symbolic procedure GHFexit(a,b,z);
begin scalar aa,bb;
aa:= 'list . listprepsq a;
bb:= 'list . listprepsq b;
return mksqnew('hypergeometric .
append(list(aa,bb),list(prepsq z)))$
end;
%***********************************************************************
%* GHF as a polynomial *
%***********************************************************************
symbolic procedure listmaxsq u;
% u - list of numbers of SQ.
% return - max value.
if null cdr u then car u else
if null caar u then car u else
if null caadr u then cadr u else
if greaterp(caar u,caadr u) or equal(car u,cadr u) then
listmaxsq((car u) . cddr u) else
listmaxsq((cadr u) . cddr u)$
symbolic procedure GHFpolynomp (u,a);
begin scalar w1,w2;
M1:
if null u then
if null w1 then <<u:=w2; return (NIL . a) >>
else <<u:=listmaxsq(w1);
a:=u . append(delete(u,w1),w2);
return (T . a)>>
else
if parfool(car u) then (w1:=(car u) . w1)
else (w2:=(car u) . w2);
u:=cdr u;
GOTO M1;
end$
symbolic procedure polynom(u,a,b,z);
% u - list of SQ.
begin scalar s; integer k;
if null caar(u) then return '(1 . 1) else
s := GHFpolynomp (b,a);
a := cdr s;
if car s then
if null caar a or greaterp(caar a,caar u) then
<<%rerror('special,124,
% "zero in the denominator of the GHF-function");
b:=a; a:=u;
return GHFexit(a,b,z);
>>
else b:=a;
k:=1; s:=1 . 1;
M:
s:=addsq(s,quotsq(multsq(multpochh(u,simp k),exptsq(z,k)),
multpochh(append(list('(1 . 1)),b),simp k)));
k:=k+1;
if greaterp(k,car negsq(car u)) then return s else goto m;
end$
%***********************************************************************
%* Lowering of the order GHF *
%***********************************************************************
symbolic smacro procedure GHFlowering1p;
begin scalar sa,sb,w1,w2;
sa:=a; sb:=b;
M1: if null b then << a:=sa; b:=sb; return NIL
>>;
M2: if null a then << w2:= (car b) . w2;
b:=cdr b;
a:=sa; w1:=nil;
GOTO M1
>>
else
if numberp(prepsq diff1sq(car a,car b)) and
greaterp(car(diff1sq(car a,car b)),0) then
<<
b:=car b . append(w2,cdr b);
a:=diff1sq(car a,car b) . append(w1,cdr a);
return T
>> else
<<
w1:=(car a) . w1;
a:=cdr a;
GOTO M2
>>;
end$
symbolic procedure lowering1(x,y,u,z);
% x -- (m . a).
% y -- (g . b).
addsq(GHFsq(u,append(list(diff1sq(addsq(car x,car y),'(1 . 1))),
cdr x),
append(list(car y),cdr y),z),
multsq(GHFsq(u,append(list(addsq(car x,car y)),listplus(cdr x,
'(1 . 1))),
append(list(addsq(car y,'(1 . 1))),
listplus(cdr y,'(1 . 1))),z),
quotsq(multsq(z,multlist(cdr x)),
multsq(car y,multlist(cdr y)))))$
symbolic smacro procedure GHFlowering2p;
begin scalar sa,sb,w1,wa,fl;
if equal(z,'(1 . 1)) then return NIL;
sa:=a; sb:=b;
M1: if null b then
<< b:=sb;
if fl then a:=wa . sa else a:= sa;
return NIL
>>;
M2: if null a then
<< b:=cdr b;
a:=sa; w1:=nil;
GOTO M1
>>
else
if numberp(prepsq diff1sq(car b,car a)) and
lessp(car(diff1sq(car a,car b)),0) then
if fl then
if not equal(wa,car a) then
<< b:=sb;
a:=list(wa,car a) . append(w1,cdr a);
return T
>>
else
<<
w1:=(car a) . w1;
a:=cdr a;
GOTO M2
>>
else
<< fl:=T;
sa:=append(w1,cdr a);
wa:=car a;
b:=cdr b; a:=sa; w1:=nil;
GOTO M1
>>
else
<< w1:= (car a) .w1;
a:=cdr a;
GOTO M2
>>;
end$
symbolic procedure lowering2(x,b,u,z);
% x -- (r s).(a).
diff1sq(multsq(GHFsq(u,append(list(caar x,addsq('(1 . 1),cadar x)),
cdr x),b,z),
quotsq(cadar x,diff1sq(cadar x,caar x))),
multsq(GHFsq(u,append(list(addsq('(1 . 1),caar x),cadar x),
cdr x),b,z),
quotsq(caar x,diff1sq(cadar x,caar x))))$
symbolic smacro procedure GHFlowering3p;
%return a = (mmm . a1).
begin scalar sa,w,mmm; % MM used in SPDE as a global.
sa:=a;
M1: if null a then << a:=sa; return NIL >>
else
if not numberp(prepsq car a) then
<<w:= (car a) . w; a:=cdr a; GOTO M1 >>;
if member ('(1 . 1), a) then <<mmm := '(1 . 1);
a:= delete('(1 . 1),a)>>
else << mmm:= car a; a:=cdr a >>; % WN 2.2 94
M2: if null a then
if listnumberp b then << a:=mmm . w; return T >>
else << a:=sa; return NIL>>
else
if equal(car a,'(1 . 1)) then
<<a:=sa; return NIL>>
else
<<w:=(car a) . w;
a:=cdr a;
GOTO M2
>>;
end$
symbolic procedure listnumberp(v);
% v -- list of SQ.
% value is T if numberp exist in (v).
if null v then NIL
else
if numberp(prepsq car v) then T
else listnumberp(cdr v)$
symbolic procedure lowering3(a,b,u,z);
multsq(quotsq(multlist(difflist(b,'(1 . 1))),multsq(z,multlist(
difflist(cdr a,'(1 . 1))))),
diff1sq(GHFsq(u, (car a) . difflist(cdr a,'(1 . 1)),
difflist(b,'(1 . 1)),z),
GHFsq(u,append(list(diff1sq(car a,'(1 . 1))),
difflist(cdr a,'(1 . 1))),difflist(b,'(1 . 1)),z)))$
%***********************************************************************
%* GHFsq, main entry *
%***********************************************************************
symbolic procedure GHFsq(u,a,b,z);
% u -- (p q) PF.
% a,b -- lists of SQ.
% z -- SQ.
begin scalar c,aaa;
u:=redpar(a,b);
a:=car u;b:=cadr u;u:=list(length(a), length(b));
if null car(z) then return '(1 . 1) else
if listparfool(b,(nil .1)) and not listparfool(a,(nil . 1)) then
% return rerror('specialf,128,
%"zero in the denominator of the GHF-function")
return GHFexit(a,b,z)
else
aaa := GHFpolynomp(a,a);
a := cdr aaa;
if car aaa then return polynom(a,a,b,z) else
if GHFlowering1p() then return lowering1(a,b,u,z) else
if GHFlowering2p() then return lowering2(a,b,u,z) else
if GHFlowering3p() then return lowering3(a,b,u,z) else
if car u = 0 and cadr u = 0 then return expdeg(simp 'e,z) else
if car u = 0 and cadr u = 1 then return GHF01(a,b,z) else
if car u = 1 and cadr u = 0 then
if z='(1 . 1) then return GHFexit(a,b,z)
else
return expdeg(diff1sq('(1 . 1),z),if null a then '(nil . 1)
else negsq(car a))
else
if car u = 1 and cadr u = 1 then return GHF11(a,b,z) else
if car u = 1 and cadr u = 2 then return GHF12(a,b,z) else
if car u = 2 and cadr u = 1 then return GHF21(a,b,z) else
if car u = cadr u + 1 then
if (c:=GHFmid(a,b,z)) = 'FAIL
then return GHFexit(a,b,z)
else return c;
if car u <= cadr u then return GHFexit(a,b,z);
return rerror('specialf,131,"hypergeometric series diverges");
end$
%***********************************************************************
% p = q+1 *
%***********************************************************************
symbolic procedure GHFmid(a,b,z);
begin scalar c;
c:= redpar(a,difflist(b, '(1 . 1)));
if length(cadr c) > 0 or length(car c) > 1 then return 'FAIL
else
return formulaformidcase(length(b), caar c,
diff1sq(car b,'(1 . 1)), z);
end$
symbolic procedure formulaformidcase(p,b,a,z);
if not(p = 1) and b = '(1 . 1) and z = '(1 . 1) then
multsq(simpx1(prepsq(multsq('(-1 . 1),a)),p,1),
quotsq(dfpsisq(a,simp(p-1)),gamsq(simp p)))
else
if b = '(1 . 1) and z='(-1 . 1) then
quotsq(multsq(simpx1(prepsq(multsq('(-1 . 2),a)),p,1),
diff1sq(dfpsisq(multsq(a, '(1 . 2)),simp(p-1)),
dfpsisq(multsq(addsq('(1 . 1),a),'(1 . 2)),
simp(p-1)))),
gamsq(simp p))
else
if z = '(1 . 1) and not numberp(prepsq b) then
multsq(
subsqnew(
derivativesq(
quotsq(gamsq(simp 'r),gamsq(addsq(simp 'r,diff1sq('(1 . 1),b)))),
'r,simp(p-1)),
a,'r),
quotsq(
multsq(multsq(simpx1(prepsq(multsq('(-1 . 1),a)),p,1), '(-1 . 1)),
gamsq(diff1sq('(1 . 1),b))),
gamsq(simp p)))
else
if z='(-1 . 1) and numberp prepsq(b) then
begin scalar c; integer k;
return multsq(
subsqnew(
derivativesq( addsq(
<<
k:=prepsq(b) - 1; c:='(nil . 1);
while prepsq(k)>0 do
<<
c:=addsq(c, multsq(gamsq(b),
simppochh(diff1sq(simp(1+k),simp 'r),
simp(prepsq(b)-1-k))));
k:=k-1
>>;
c
>>,
quotsq(
multsq(gamsq(diff1sq(b,simp 'r)),
diff1sq(psisq(multsq(addsq(simp 'r,'(1 . 1)),'(1 . 2))),
psisq(multsq(simp 'r,'(1 . 2))))),
multsq((2 . 1), gamsq(diff1sq('(1 . 1),simp 'r))))),
'r,p-1), a, 'r),
quotsq(
multsq(simpx1(prepsq(multsq('(-1 . 1),a)),p,1), '(-1 . 1)),
multsq(gamsq(simp p),gamsq(simp b))))
end
else 'FAIL$
%***********************************************************************
%* Particular cases *
%***********************************************************************
symbolic procedure GHF01(a,b,z);
if znak z then
multsq(gamsq(car b),multsq(bessmsq(diff1sq(car b,'(1 . 1)),
multsq('(2 . 1),simpx1(prepsq z,1,2))),
expdeg(z,quotsq(diff1sq('(1 . 1),car b),'(2 . 1)))))
else
multsq(gamsq(car b),multsq(besssq(diff1sq(car b,'(1 . 1)),
multsq('(2 . 1),simpx1(prepsq(negsq z),1,2))),expdeg(negsq z,
quotsq(diff1sq('(1 . 1),car b),'(2 . 1))))) $
symbolic procedure GHF11(a,b,z);
if equal(car b,multsq('(2 . 1),car a)) then
multsq(multsq(gamsq(addsq('(1 . 2),car a)),expdeg(simp 'e,
multsq(z,'(1 . 2)))),
multsq(expdeg(multsq(z,'(1 . 4)),diff1sq('(1 . 2),car a)),
bessmsq(diff1sq(car a,'(1 . 2)),multsq(z,'(1 . 2)))))
else
if equal(car a,'(1 . 2)) and equal(car b,'(3 . 2)) then
multsq(quotsq(simpx1('pi,1,2),'(2 . 1)),
if znak z then
quotsq(simpfunc('erfi,simpx1(prepsq z,1,2)),simpx1(prepsq z,1,2))
else
quotsq(simpfunc('erf,simpx1(prepsq(negsq z),1,2)),
simpx1(prepsq(negsq z),1,2)))
else
if equal(car a,'(1 . 1)) and equal(car b,'(3 . 2)) and znak z then
multsq(multsq('(1 . 2),expdeg(simp 'e,z)),
multsq(simpfunc('erf,simpx1(prepsq z,1,2)),simpx1(prepsq
quotsq(simp('pi),z),1,2)))
else GHFexit(a,b,z)$
symbolic procedure GHF21(a,b,z);
if and(equal(car a,'(1 . 2)),equal(cadr a,'(1 . 2)),
equal(car b,'(3 . 2)),znak(z))
then
quotsq(simpfunc('asin,simpx1(prepsq(z),1,2)),
simpx1(prepsq(z),1,2))
else
if ((equal(car a,'(1 . 2)) and equal(cadr a,'(1 . 1))) or
(equal(car a,'(1 . 1)) and equal(cadr a,'(1 . 2)))) and
equal(car b,'(3 . 2))
then
<<
if not znak(z) then
quotsq(simpfunc('atan,simpx1(prepsq(negsq z),1,2)),
simpx1(prepsq(negsq z),1,2)) else
% if not equal(z,'(1 . 1)) then
% quotsq(simpfunc('log,addsq('(1 . 1),simpx1(prepsq z,1,2))),
% multsq(simpfunc('log,diff1sq('(1 . 1),simpx1(prepsq z,1,2))),
% multsq('(2 . 1),simpx1(prepsq z,1,2)))) else
if not equal(z,'(1 . 1)) then
multsq(simpfunc('log,quotsq(addsq('(1 . 1),simpx1(prepsq z,1,2)),
diff1sq('(1 . 1),simpx1(prepsq z,1,2)))),
invsq(multsq('(2 . 1),simpx1(prepsq z,1,2)))) else
GHFexit(a,b,z)
>>
else
if and(equal(car a,'(1 . 1)),equal(cadr a,'(1 . 1)),
equal(car b,'(2 . 1)),not equal(z,'(1 . 1)))
then
quotsq(simpfunc('log,addsq('(1 . 1),negsq z)),negsq z)
else
if equal(diff1sq(addsq(car a,cadr a),car b),'(-1 . 2)) and
(equal(multsq('(2 . 1),car a),car b) or
equal(multsq('(2 . 1),cadr a),car b))
then
multsq(expdeg(addsq('(1 . 1),
simpx1(prepsq(diff1sq('(1 . 1),z)),1,2)),
diff1sq('(1 . 1),car b)),expdeg('(2 . 1),addsq(car b,'(-1 . 1))))
else
if z='(1 . 1)
and (not numberp prepsq diff1sq(car b,addsq(car a, cadr a))
or prepsq(diff1sq(car b,addsq(car a, cadr a))) > 0 )
then quotsq(multsq(gamsq(car b),
gamsq(diff1sq(car b,addsq(car a,cadr a))) ),
multsq(gamsq(diff1sq(car b,car a)),
gamsq(diff1sq(car b,cadr a))))
else
if car a='(1 . 1) and cadr a='(1 . 1) and numberp prepsq car b and
prepsq car(b) > 0 and not(z='(1 . 1)) then
formula136(prepsq car b,z) else
GHFexit(a,b,z)$
symbolic procedure formula136(m,z);
begin scalar c; integer k;
c:='(nil . 1); k:=2;
while k<=m-1 do
<< c:=addsq(c,quotsq(exptsq(diff1sq(z,'(1 . 1)),k),
multsq(exptsq(z,k),simp(m-k))));
k:=k+1
>>;
c:=diff1sq(c,multsq(exptsq(quotsq(diff1sq(z,'(1 . 1)),z),m),
simpfunc('log,diff1sq('(1 . 1),z))));
return
multsq(c,
quotsq(multsq(simp(m-1),z),exptsq(diff1sq(z,'(1 . 1)),2)));
end$
symbolic procedure GHF12(a,b,z);
if equal(car a,'(3 . 4)) and (equal(car b,'(3 . 2)) and equal(cadr b,
'(7 . 4)) or equal(car b,'(7 . 4)) and equal(cadr b,'(3 . 2)))
and not znak z then
<<z:=multsq('(2 . 1),simpx1(prepsq(negsq z),1,2));
multsq(quotsq(multsq('(3 . 1),simpx1('pi,1,2)),
multsq(simpx1(2,1,2),simpx1(prepsq z,3,2))),
simpfunc('intfs,z)) >>
else
if equal(car a,'(1 . 4)) and (equal(car b,'(1 . 2)) and equal(cadr b,
'(5 . 4)) or equal(car b,'(5 . 4)) and equal(cadr b,'(1 . 2)))
and not znak z then
<<z:=multsq((2 . 1),simpx1(prepsq(negsq z),1,2));
multsq(quotsq(simpx1('pi,1,2),multsq(simpx1(2,1,2),
simpx1(prepsq z,1,2))),simpfunc('intfc,z)) >>
else GHFexit(a,b,z)$
symbolic smacro procedure fehler();
rerror('specialf,139,"Wrong arguments to hypergeometric");
symbolic procedure hypergeom(U);
begin scalar list1,list2,res,res1;
if not (length(u) = 3) then fehler();
if pairp u then list1 :=car u else fehler();
if pairp cdr u then list2 := cadr u else fehler();
if not pairp cddr u then fehler();
if not eqcar(list1,'list) then fehler();
if not eqcar(list2,'list) then fehler();
list1 := for each x in cdr list1 collect simp reval x;
list2 := for each x in cdr list2 collect simp reval x;
res := ghfsq(list (length list1,length list2),
list1,list2,simp caddr u);
res1 := prepsq res;
return if eqcar(res1,'hypergeometric) then res else simp res1;
end;
put('hypergeometric,'simpfn,'hypergeom);
% something is missing:
algebraic let {hypergeometric({1/2,1/2},{3/2},-(~x)^2) => asinh(x)/x };
algebraic let hypergeometric({~a,~b},{~c},-(~z/(1-~z))) =>
hypergeometric({a,c-b},{c},z) * (1-z)^a;
% Pfaff's reflection law
flag ('(permutationof),'boolean);
symbolic procedure permutationof(set1,set2);
length set1 = length set2
and not setdiff(set1,set2);
algebraic let {
hypergeometric({},~lowerind,~z) =>
3/(32*sqrt(2)*(-z)^(3/4))*
(cosh(2*(-z*4)^(1/4))*sin(2*(-z*4)^(1/4)) -
sinh(2*(-z*4)^(1/4))*cos(2*(-z*4)^(1/4)))
when permutationof(lowerind,{5/4,3/2,7/4})
and numberp z and z < 0,
hypergeometric({},~lowerind,~z) =>
1/(4*(-4*z)^(1/4))*
(sinh(2*(-z*4)^(1/4))*cos(2*(-z*4)^(1/4)) +
cosh(2*(-z*4)^(1/4))*sin(2*(-z*4)^(1/4)))
when permutationof(lowerind,{5/4,1/2,3/4})
and numberp z and z < 0,
hypergeometric({},~lowerind,~z) =>
1/(8*(-z)^(1/2))*sinh(2*(-z*4)^(1/4))*sin(2*(-z*4)^(1/4))
when permutationof(lowerind,{3/4,5/4,3/2})
and numberp z and z < 0,
hypergeometric({},~lowerind,~z) =>
cosh(2*(-z*4)^(1/4))*cos(2*(-z*4)^(1/4))
when permutationof(lowerind,{1/4,1/2,3/4})
and numberp z and z < 0,
hypergeometric({},~lowerind,~z) =>
3/(64*z^(3/4))*(sinh(4*z^(1/4)) -sin(4*z^(1/4)))
when permutationof(lowerind,{5/4,3/2,7/4}),
hypergeometric({},~lowerind,~z) =>
1/(8*z^(1/4))*(sinh(4*z^(1/4)) +sin(4*z^(1/4)))
when permutationof(lowerind,{5/4,1/2,3/4}),
hypergeometric({},~lowerind,~z) =>
1/(16*z^(1/2))*(cosh(4*z^(1/4)) -cos(4*z^(1/4)))
when permutationof(lowerind,{3/4,5/4,3/2}),
hypergeometric({},~lowerind,~z) =>
1/2*(cosh(4*z^(1/4)) + cos(4*z^(1/4)))
when permutationof(lowerind,{1/4,1/2,3/4})
};
algebraic
<< hypergeometric_rules:=
{ hypergeometric({~a},{},~x) => (1-x)^(-a) when not(numberp x and x=1),
% F(a;b;z)
hypergeometric({1/2},{5/2},~x) =>
3/(4*x)*((1+2*x)/2*sqrt(pi/x)*erfi(sqrt(x))-e^x),
hypergeometric({1},{1/2},~x) =>
1+sqrt(pi*x)*e^x*erf(sqrt(x)),
hypergeometric({1},{3/2},~x) =>
1/2*sqrt(pi/x)*e^x*erf(sqrt(x)),
hypergeometric({1},{5/2},~x) =>
3/(2*x)*(1/2*sqrt(pi/x)*e^(x)*erf(sqrt(x))-1),
hypergeometric({1},{7/2},~x) =>
5/(4*x^2)*(3/2*sqrt(pi/x)*e^x*erf(sqrt(x))-3-2*x),
hypergeometric({3/2},{5/2},-~x) =>
e^(-x)*hypergeometric({1},{5/2},x),
hypergeometric({3/2},{5/2},~x) =>
3/(2*x)*(e^x-1/2*sqrt(pi/x)*erfi(sqrt(x))),
hypergeometric({5/2},{7/2},-~x) =>
e^(-x)*hypergeometric({1},{7/2},x),
hypergeometric({7/2},{9/2},-~x) =>
e^(-x)*hypergeometric({1},{9/2},x),
hypergeometric({~a},{~b},~x) =>
a*(-x)^(-a)*m_gamma(a,-x) when b = a + 1,
hypergeometric({~a},{~b},~x) =>
(a+1)*(e^(x)+(-x-a)*(-x)^(-a-1)*m_gamma(a+1,-x))
when b = a + 2,
% F(a,b;c;z)
hypergeometric({-1/2,1},{3/2},-~x) =>
(1/2)*(1+(1+x)*(atan(sqrt(x))/sqrt(x))),
hypergeometric({-1/2,1},{3/2},~x) =>
(1/2)*(1+(1-x)*(atanh(sqrt(x))/sqrt(x))),
hypergeometric({1/2,1},{5/2},-~x) =>
(3/2*-x)*(1-(1+x)*(atan(sqrt(x))/sqrt(x))),
hypergeometric({1/2,1},{5/2},~x) =>
(3/2*x)*(1-(1-x)*(atanh(sqrt(x))/sqrt(x))),
hypergeometric({~a + 1/2,~a},{1/2},~x) =>
(1-x)^(-a)*cos(2*a*atan(sqrt(-x))),
hypergeometric({5/4,3/4},{1/2},~x) =>
(1-x)^(-3/4)*cos(3/2*atan(sqrt(-x))),
hypergeometric({(~n+1)/2 + 1/2,(~n+1)/2},{1/2},~x) =>
(1-x)^(-(n+1)/2)*cos((n+1)*atan(sqrt(-x))),
hypergeometric({7/4,5/4},{3/2},~x) =>
2/3*(1-x)^(-3/4)/sqrt(-x)*sin(3/2*atan(sqrt(-x))),
hypergeometric({~a + 1/2,~a},{3/2},~x) =>
((1-x)^(1/2-a))/((2*a-1)*sqrt(-x))*sin((2*a-1)*atan(sqrt(-x))),
hypergeometric({(~n+2)/2 + 1/2,(~n+2)/2},{3/2},~x) =>
((1-x)^(1/2-(n+2)/2))/((2*(n+2)/2-1)*sqrt(-x))*sin((2*(n+2)/2-1)
*atan(sqrt(-x))),
% F(a;b,c;z);
hypergeometric({-1/2},{1/2,1/2},-~x) =>
cos(2*sqrt(x))+2*sqrt(x)*si(2*sqrt(x)),
hypergeometric({-1/2},{1/2,1/2},~x) =>
cosh(2*sqrt(x))-2*x*shi(2*sqrt(x)),
hypergeometric({-1/2},{1/2,3/2},-~x) =>
(1/2)*(cos(2*sqrt(x))+(sin(2*sqrt(x)))/(2*sqrt(x))
+2*sqrt(x)*si(2*sqrt(x))),
hypergeometric({-1/2},{1/2,3/2},~x) =>
(1/2)*(cosh(2*sqrt(x))+(sinh(2*sqrt(x)))/(2*sqrt(x))
-2*sqrt(x)*shi(2*sqrt(x))),
hypergeometric({-1/2},{3/2,3/2},-~x) =>
(1/4)*(cos(2*sqrt(x))+(sin(2*sqrt(x)))/(2*sqrt(x))
+(1+2*x)*(si(2*sqrt(x)))/sqrt(x)),
hypergeometric({-1/2},{3/2,3/2},~x) =>
(1/4)*(cosh(2*sqrt(x)) +(sinh(2*sqrt(x)))/(2*sqrt(x))
+(1-2*x)*(shi(2*sqrt(x)))/sqrt(x)),
hypergeometric({1/2},{3/2,3/2},-~x) =>
si(2*sqrt(x))/(2*sqrt(x)),
hypergeometric({1/2},{3/2,3/2},~x) =>
shi(2*sqrt(x))/(2*sqrt(x)),
hypergeometric({1/2},{5/2,3/2},-~x) =>
3/(8*-x)*(2*sqrt(x)*si(2*sqrt(x))-cos(2*sqrt(x))+
(sin(2*sqrt(x)))/(2*sqrt(x))),
hypergeometric({1/2},{5/2,3/2},~x) =>
3/(8*x)*(2*sqrt(x)*shi(2*sqrt(x))-cosh(2*sqrt(x))+
(sinh(2*sqrt(x)))/(2*sqrt(x))),
hypergeometric({1},{3/4,5/4},~x) =>
1/2*sqrt(pi/sqrt(-x))*(cos(2*sqrt(-x))*fresnel_c(2*sqrt(-x))
+ sin(2*sqrt(-x))*fresnel_s(2*sqrt(-x))),
hypergeometric({1},{5/4,7/4},~x) =>
3*sqrt(pi)/(8*(sqrt(-x))^(3/2))*(sin(2*sqrt(-x))
*fresnel_c(2*sqrt(-x))-cos(2*sqrt(-x))*fresnel_s(2*sqrt(-x))),
hypergeometric({5/2},{7/2,7/2},-~x) =>
(75/(16*x^2))*(3*si(2*sqrt(x))/(2*sqrt(x))
- 2*sin(2*sqrt(x))/sqrt(x) + cos(2*sqrt(x))),
hypergeometric({5/2},{7/2,7/2},~x) =>
(75/(16*x^2))*(3*shi(2*sqrt(x))/(2*sqrt(x))
- 2*sinh(2*sqrt(x))/sqrt(x) + cosh(2*sqrt(x))),
hypergeometric({~a},{~b,3/2},~x) =>
-2^(1-2*a)*a*(sqrt(-x))^(-2*a)*
(gamma(2*a-1)*cos(a*pi)+fresnel_s(2*sqrt(-x),2*a-1))
when b = a + 1,
hypergeometric({~a},{~b,1/2},~x) =>
2^(1-2*a)*a*(sqrt(-x))^(-2*a)*
(gamma(2*a)*cos(a*pi)-fresnel_c(2*sqrt(-x),2*a))
when b = a + 1
};
let hypergeometric_rules;
operator Poisson!-Charlier, Toronto;
let { Toronto(~m,~n,~x) =>
Gamma(m/2 + 1/2)/factorial n * x^(2*n-2*m+1)*exp(-x^2) *
KummerM(m/2+1/2,1+n,x^2),
Poisson!-Charlier(~n,~nu,~x) =>
pochhammer(1 + nu-n,n)/(sqrt factorial n * x^(n/2))*
sum(pochhammer(-n,i)*x^i/
(pochhammer(1+nu-n,i) * factorial i)
,i,0,n)
};
>>;
endmodule;
end;