module groebrst;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% restrictions for polynomials during Groebner base calculation
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
symbolic procedure groebtestrestriction (h,arg);
if groebrestriction!* = 'nonnegative then groebnonneg(h,arg)
else
if groebrestriction!* = 'positive then groebpos(h,arg)
else
if groebrestriction!* = 'izeropoint then groebzero(h,arg)
else
rerror(groebnr2,9,
"Groebner: general restrictions not yet implemented");
symbolic procedure groebnonneg(h,arg);
% test if h is a polynomial which can have the value zero with
% only nonnegative variable settings.
begin scalar x,break,vev1,vevl,problems,problems1,r;
if vdpzero!? h then return nil
else
if vevzero!? vdpevlmon h then goto finish;
% first test the coefficients
if vdpredZero!? h then return nil; % simple monomial
break := nil;
x := h;
while not vdpzero!? x and not break do
<<vev1 := vdpevlmon x;
if not vbcplus!? vdpLbc x then break := t;
if not break then x := vdpred x>>;
if break then return nil; % at least one negative coeff
if vevzero!? vev1 then goto finish; % nonneg. solution imposs.
% homogenous polynomial: find combinations of
% variables which are solutions
x := h;
vev1 := vdpevlmon x;
vevl := vevsplit(vev1);
problems := for each x in vevl collect list x;
x := vdpred x;
while not vdpzero!? x do
<< vev1 := vdpevlmon x;
vevl := vevsplit(vev1);
problems1 := nil;
for each e in vevl do
for each p in problems do
<<r := if not member(e,p) then e . p else p;
problems1 := union(list r, problems1)>>;
problems := problems1;
x := vdpred x >>;
problems := % lift vevs to polynomials
for each p in problems collect
for each e in p collect
vdpfmon(a2vbc 1,e);
% rule out problems contained in others
for each x in problems do
for each y in problems do
if not eq(x,y) and subset!?(x,y) then
problems := delete (y,problems);
% rule out some by cdr
problems1 := nil;
while problems do
<<if vdpDisjoint!? (car problems,arg)
then problems1 := car problems . problems1;
problems := cdr problems >>;
finish:
groebmess24(h,problems1,arg);
return
if null problems1 then 'icancel
else 'restriction . problems1 end;
symbolic procedure groebpos(h,dummy);
% test if h is a polynomial which can have the value zero with
% only positive (nonnegative and nonzero) variable settings.
begin scalar x,break,vev1;
dummy := nil;
if vdpzero!? h then return nil
else
if vevzero!? vdpevlmon h then return nil;
% a simple monomial can never have pos. zeros
if vdpredzero!? h then return groebposcancel(h);
break := nil;
x := h;
% test coefficients
while not vdpzero!? x and not break do
<<vev1 := vdpevlmon x;
if not vbcplus!? vdpLbc x then break := t;
if not break then x := vdpred x>>;
if not break then return groebPosCancel(h);
if not groebposvevaluate h then groebPosCancel(h);
return nil end;
symbolic procedure groebposvevaluate h; <<h := nil; t>>;
% test if a polynomial can become zero under user restrictions
% here a dummy to be rplaced elsewhere
symbolic procedure groebzero(h,dummy);
begin scalar l;
dummy := nil;
l:=vdplastmon h;
if l and vevzero!? cdr l then return groebPosCancel h;
return nil end;
symbolic procedure groebposcancel(h);
<<groebmess24(h,nil,nil); 'cancel>>;
endmodule;;end;