/*
* cry1.c Copyright Codemist Ltd. 2002-20057 *
*
* This is an experimental and not properly validated cipher. The idea
* is that of a feedback shift register. It observes that in any single bit
* position and for so long as one ignored carries, ADD, SUBTRACT and XOR
* all behave the same. So it runs a fibonacci-style generator but with the
* processing written out in-line so it can use these three operations
* in turn. The pattern of their use was derived from bits of the value
* of pi or some such and is "random". Next it make output words by combining
* (again using mixtures of arithmetic and logical operators) fields from
* within the raw shift register. It discards some values or bits from the
* main shift register. It then shuffles the resulting output words in
* 4K word buffer so it will be harder to work out which came from where.
* This HAS NOT been subject to serious crypto-analysis so should at most
* be used in places where confusion is enough...
*/
/*
* This code may be used and modified, and redistributed in binary
* or source form, subject to the "CCL Public License", which should
* accompany it. This license is a variant on the BSD license, and thus
* permits use of code derived from this in either open and commercial
* projects: but it does require that updates to this code be made
* available back to the originators of the package.
* Before merging other code in with this or linking this code
* with other packages or libraries please check that the license terms
* of the other material are compatible with those of this.
*/
/*
* shift register length = 65
* tap at position 18
* shuffle-buffer size = 4096
*/
/* Signature: 4917b7ea 18-Jan-2007 */
#ifdef TIME_TEST
#include <stdio.h>
#include <time.h>
#define N 10000000 /* parameters for time test */
#define NSTARTS 4000
#define NTINY 50000000
#define KEY "Arthurs's sample key"
typedef unsigned int uint32_t;
#endif /* TIME_TEST */
static uint32_t lf[65], mix[4096];
#define R(x) ((x) >> 20)
#define S(x) ((x) >> 9)
#define T(x) ((x) << 13)
static unsigned char byte_order_test[] = {1, 0, 0, 0};
#define CRYPT_BLOCK_SIZE 128
void crypt_get_block(unsigned char block[CRYPT_BLOCK_SIZE])
{
uint32_t *b = (uint32_t *)block;
int n;
lf[0] -= lf[18]; lf[1] ^= lf[19];
lf[2] -= lf[20]; lf[3] += lf[21];
lf[4] += lf[22]; lf[5] -= lf[23];
lf[6] ^= lf[24]; lf[7] -= lf[25];
lf[8] += lf[26]; lf[9] ^= lf[27];
lf[10] -= lf[28]; lf[11] -= lf[29];
lf[12] += lf[30]; lf[13] += lf[31];
lf[14] -= lf[32]; lf[15] ^= lf[33];
lf[16] -= lf[34]; lf[17] += lf[35];
lf[18] += lf[36]; lf[19] += lf[37];
lf[20] -= lf[38]; lf[21] -= lf[39];
lf[22] ^= lf[40]; lf[23] += lf[41];
lf[24] -= lf[42]; lf[25] -= lf[43];
lf[26] += lf[44]; lf[27] += lf[45];
lf[28] -= lf[46]; lf[29] ^= lf[47];
lf[30] -= lf[48]; lf[31] += lf[49];
lf[32] -= lf[50]; lf[33] ^= lf[51];
lf[34] -= lf[52]; lf[35] ^= lf[53];
lf[36] += lf[54]; lf[37] += lf[55];
lf[38] ^= lf[56]; lf[39] ^= lf[57];
lf[40] += lf[58]; lf[41] -= lf[59];
lf[42] ^= lf[60]; lf[43] += lf[61];
lf[44] += lf[62]; lf[45] ^= lf[63];
lf[46] ^= lf[64]; lf[47] -= lf[0];
lf[48] ^= lf[1]; lf[49] ^= lf[2];
lf[50] ^= lf[3]; lf[51] ^= lf[4];
lf[52] ^= lf[5]; lf[53] ^= lf[6];
lf[54] += lf[7]; lf[55] -= lf[8];
lf[56] -= lf[9]; lf[57] ^= lf[10];
lf[58] -= lf[11]; lf[59] -= lf[12];
lf[60] ^= lf[13]; lf[61] += lf[14];
lf[62] ^= lf[15]; lf[63] -= lf[16];
lf[64] -= lf[17];
n = R(lf[0]); b[0] = mix[n]; mix[n] = (lf[54] + S(lf[29])) ^ T(lf[5]);
n = R(lf[1]); b[1] = mix[n]; mix[n] = (lf[39] + S(lf[47])) + T(lf[15]);
n = R(lf[2]); b[2] = mix[n]; mix[n] = (lf[25] + S(lf[14])) + T(lf[38]);
n = R(lf[4]); b[3] = mix[n]; mix[n] = (lf[48] - S(lf[40])) ^ T(lf[10]);
n = R(lf[5]); b[4] = mix[n]; mix[n] = (lf[44] - S(lf[55])) - T(lf[49]);
n = R(lf[6]); b[5] = mix[n]; mix[n] = (lf[9] ^ S(lf[37])) + T(lf[50]);
n = R(lf[8]); b[6] = mix[n]; mix[n] = (lf[64] ^ S(lf[51])) + T(lf[8]);
n = R(lf[9]); b[7] = mix[n]; mix[n] = (lf[11] - S(lf[35])) - T(lf[21]);
n = R(lf[10]); b[8] = mix[n]; mix[n] = (lf[20] ^ S(lf[21])) ^ T(lf[3]);
n = R(lf[12]); b[9] = mix[n]; mix[n] = (lf[6] ^ S(lf[31])) - T(lf[61]);
n = R(lf[13]); b[10] = mix[n]; mix[n] = (lf[3] - S(lf[16])) ^ T(lf[16]);
n = R(lf[14]); b[11] = mix[n]; mix[n] = (lf[17] - S(lf[53])) - T(lf[2]);
n = R(lf[16]); b[12] = mix[n]; mix[n] = (lf[27] + S(lf[42])) - T(lf[33]);
n = R(lf[17]); b[13] = mix[n]; mix[n] = (lf[28] + S(lf[63])) - T(lf[46]);
n = R(lf[18]); b[14] = mix[n]; mix[n] = (lf[10] - S(lf[46])) + T(lf[35]);
n = R(lf[20]); b[15] = mix[n]; mix[n] = (lf[53] - S(lf[10])) - T(lf[27]);
n = R(lf[21]); b[16] = mix[n]; mix[n] = (lf[4] + S(lf[18])) - T(lf[7]);
n = R(lf[22]); b[17] = mix[n]; mix[n] = (lf[43] + S(lf[64])) ^ T(lf[45]);
n = R(lf[24]); b[18] = mix[n]; mix[n] = (lf[14] + S(lf[26])) + T(lf[44]);
n = R(lf[25]); b[19] = mix[n]; mix[n] = (lf[23] ^ S(lf[38])) + T(lf[58]);
n = R(lf[26]); b[20] = mix[n]; mix[n] = (lf[47] + S(lf[59])) ^ T(lf[47]);
n = R(lf[28]); b[21] = mix[n]; mix[n] = (lf[63] - S(lf[36])) - T(lf[57]);
n = R(lf[29]); b[22] = mix[n]; mix[n] = (lf[56] + S(lf[4])) + T(lf[19]);
n = R(lf[30]); b[23] = mix[n]; mix[n] = (lf[42] - S(lf[52])) - T(lf[56]);
n = R(lf[32]); b[24] = mix[n]; mix[n] = (lf[37] + S(lf[3])) - T(lf[63]);
n = R(lf[33]); b[25] = mix[n]; mix[n] = (lf[32] + S(lf[1])) - T(lf[12]);
n = R(lf[34]); b[26] = mix[n]; mix[n] = (lf[62] - S(lf[39])) - T(lf[31]);
n = R(lf[36]); b[27] = mix[n]; mix[n] = (lf[2] ^ S(lf[44])) ^ T(lf[18]);
n = R(lf[37]); b[28] = mix[n]; mix[n] = (lf[24] ^ S(lf[50])) ^ T(lf[55]);
n = R(lf[38]); b[29] = mix[n]; mix[n] = (lf[22] + S(lf[27])) - T(lf[32]);
n = R(lf[40]); b[30] = mix[n]; mix[n] = (lf[51] + S(lf[33])) + T(lf[0]);
n = R(lf[41]); b[31] = mix[n]; mix[n] = (lf[52] ^ S(lf[19])) - T(lf[26]);
n = R(lf[42]); mix[n] = (lf[5] ^ S(lf[41])) + T(lf[28]);
n = R(lf[44]); mix[n] = (lf[30] ^ S(lf[15])) - T(lf[30]);
n = R(lf[45]); mix[n] = (lf[45] + S(lf[24])) ^ T(lf[51]);
n = R(lf[46]); mix[n] = (lf[13] + S(lf[49])) - T(lf[11]);
n = R(lf[48]); mix[n] = (lf[16] + S(lf[11])) - T(lf[39]);
n = R(lf[49]); mix[n] = (lf[57] - S(lf[43])) - T(lf[60]);
n = R(lf[50]); mix[n] = (lf[49] + S(lf[48])) ^ T(lf[25]);
n = R(lf[52]); mix[n] = (lf[34] - S(lf[22])) ^ T(lf[23]);
n = R(lf[53]); mix[n] = (lf[18] + S(lf[6])) + T(lf[1]);
n = R(lf[54]); mix[n] = (lf[29] + S(lf[61])) - T(lf[64]);
n = R(lf[56]); mix[n] = (lf[59] ^ S(lf[45])) - T(lf[41]);
n = R(lf[57]); mix[n] = (lf[36] - S(lf[32])) + T(lf[37]);
n = R(lf[58]); mix[n] = (lf[40] + S(lf[60])) + T(lf[14]);
n = R(lf[60]); mix[n] = (lf[1] + S(lf[56])) ^ T(lf[36]);
n = R(lf[61]); mix[n] = (lf[8] ^ S(lf[5])) ^ T(lf[17]);
n = R(lf[62]); mix[n] = (lf[31] ^ S(lf[17])) ^ T(lf[52]);
/* The test this way around favours Intel etc byte order */
if (((uint32_t *)byte_order_test)[0] != 1)
{ int i;
for (i=0; i<32; i++)
{ uint32_t w = b[i];
uint32_t b0, b1, b2, b3;
b0 = (w >> 24) & 0xffU;
b1 = (w >> 8) & 0xff00U;
b2 = (w << 8) & 0xff0000U;
b3 = (w << 24) & 0xff000000U;
b[i] = b0 | b1 | b2 | b3;
}
}
return;
}
void crypt_init(char *key)
{
char *pk = key;
unsigned char junk[128];
int i, j;
uint32_t w = 0;
for (i=0; i<260; i++)
{ int k = *pk++;
if (k == 0) pk = key; /* Cycle key (inc. terminating 0) */
w = (w << 8) | (k & 0xff);
if ((i % 4) == 3) lf[i/4] = w;
}
for (i=0; i<4096; i++) mix[i] = 0;
for (i=0; i<8; i++)
{ for (j=0; j<65; j++)
lf[j] = (lf[j] << 10) | (lf[j] >> 22);
lf[0] |= 1;
for (j=0; j<64; j++)
crypt_get_block(junk);
}
for (i=0; i<4096;)
{ int j;
crypt_get_block(junk);
for (j=0; j<32; j++)
{ uint32_t r = junk[4*j];
r = (r << 8) | junk[4*j+1];
r = (r << 8) | junk[4*j+2];
r = (r << 8) | junk[4*j+3];
if (r == 0) continue;
mix[i++] ^= junk[j];
if (i == 4096) break;
}
}
for (i=0; i<192; i++)
crypt_get_block(junk);
return;
}
#ifdef TIME_TEST
/*
* The main program here does not do anything of real interest. It
* runs both the key-setup and the main loop lots of times and reports
* how long it all takes.
*
* Here is some sample output from a Pentium-II 400Mhz system
*
* 1.23 milliseconds to startup
* rate = 106.43 megabytes per second
* 9a cb fe 7f 5b 10 0b ce f6 49 89 b2 b7 17 f1 c7
* 29 39 70 f0 ff 4b ec 8a 98 af 41 38 52 85 c9 88
* 91 c7 18 46 68 3c 92 04 b2 21 ed 5e 30 6e e0 d9
* cd ba d9 a6 86 9a 65 35 5c 65 61 e6 45 00 ac 88
* 41 8a 5e 76 cb 2c 0c fb 62 3b 1b 31 37 cf 1f 97
* 81 6c 53 73 3a fe 4f df b6 a4 00 45 59 ab 58 48
* ce e7 08 81 67 17 07 f3 d3 88 34 4b 8a ec 8c 43
* e9 4e 65 f5 f2 21 1e a9 44 6d a1 ad ac d5 f9 ac
*
*/
int main(int argc, char *argv[])
{
clock_t c0, c1;
unsigned char r[CRYPT_BLOCK_SIZE];
int i, j = 0;
double rate;
c0 = clock();
for (i=0; i<(NTINY+1); i++) j ^= i;
c1 = clock();
printf("[%.8x] %.2f nanoseconds to do tiny loop\n", j,
1.0e9*(double)(c1-c0)/((double)CLOCKS_PER_SEC*(double)(NTINY+1)));
c0 = clock();
for (i=0; i<NSTARTS; i++) crypt_init(KEY);
c1 = clock();
printf("%.2f milliseconds to startup\n",
1000.0*(double)(c1-c0)/((double)CLOCKS_PER_SEC*(double)NSTARTS));
c0 = clock();
for (i=0; i<N; i++) crypt_get_block(r);
c1 = clock();
rate = (double)N*(double)CRYPT_BLOCK_SIZE*(double)CLOCKS_PER_SEC/
((double)(c1-c0)*1.0e6);
printf("rate = %.2f megabytes per second\n", rate);
for (i=0; i<128; i++)
{ printf("%.2x ", r[i]);
if ((i % 16) == 15) printf("\n");
}
return 0;
}
#endif /* TIME_TEST */
#undef R
#undef S
#undef T