Sun Jan 3 23:47:50 MET 1999
REDUCE 3.7, 15-Jan-99 ...
1: 1:
2: 2: 2: 2: 2: 2: 2: 2: 2:
3: 3: % Test file for i_solve and r_solve operators.
% Author: F.J.Wright@Maths.QMW.ac.uk
% Version 1.051, 16 Jan 1995
i_solve((x - 10)*(x + 20)*(x - 30)*(x + 40)*(x - 50));
{x=-20,x=-40,x=50,x=30,x=10}
% {x=-20,x=-40,x=50,x=30,x=10}
i_solve(x^4 - 1, x);
{x=1,x=-1}
% {x=1,x=-1}
i_solve(x^4 + 1);
{}
% {}
r_solve((x^2 - 1)*(x^2 - 9));
{x=1,x=-3,x=3,x=-1}
% {x=1,x=-3,x=3,x=-1}
r_solve(9x^2 - 1);
1 - 1
{x=---,x=------}
3 3
% 1 - 1
% {x=---,x=------}
% 3 3
r_solve(9x^2 - 4, x);
- 2 2
{x=------,x=---}
3 3
% - 2 2
% {x=------,x=---}
% 3 3
r_solve(9x^2 + 16, x);
{}
% {}
r_solve((9x^2 - 16)*(x^2 - 9), x);
- 4 4
{x=------,x=3,x=-3,x=---}
3 3
% - 4 4
% {x=------,x=3,x=-3,x=---}
% 3 3
% First two examples from Loos' paper:
% ===================================
r_solve(6x^4 - 11x^3 - x^2 - 4);
- 2
{x=------,x=2}
3
% - 2
% {x=------,x=2}
% 3
r_solve(2x^3 + 12x^2 + 13x + 15);
{x=-5}
% {x=-5}
% Remaining four CORRECTED examples from Loos' paper:
% ==================================================
r_solve(2x^4 - 4x^3 + 3x^2 - 5x - 2);
{x=2}
% {x=2}
r_solve(6x^5 + 11x^4 - x^3 + 5x - 6);
- 3 2
{x=------,x=---}
2 3
% - 3 2
% {x=------,x=---}
% 2 3
r_solve(x^5 - 5x^4 + 2x^3 - 25x^2 + 21x + 270);
{x=3,x=5,x=-2}
% {x=3,x=5,x=-2}
r_solve(2x^6 + x^5 - 9x^4 - 6x^3 - 5x^2 - 7x + 6);
1
{x=---,x=-2}
2
% 1
% {x=---,x=-2}
% 2
% Degenerate equations:
% ====================
i_solve 0;
{}
% {}
i_solve(0, x);
{x=arbint(1)}
% {x=arbint(1)}
r_solve(a = a, x);
{x=arbrat(2)}
% {x=arbrat(2)}
r_solve(x^2 - 1, y);
{}
% {}
% Test of options and multiplicity:
% ================================
i_solve(x^4 - 1, x, noeqs);
{1,-1}
% {1,-1}
i_solve((x^4 - 1)^3, x);
{x=1,x=-1}
% {x=1,x=-1}
root_multiplicities;
{3,3}
% {3,3}
on multiplicities;
i_solve((x^4 - 1)^3, x);
{x=1,x=1,x=1,x=-1,x=-1,x=-1}
% {x=1,x=1,x=1,x=-1,x=-1,x=-1}
root_multiplicities;
{}
% {}
i_solve((x^4 - 1)^3, x, separate);
{x=1,x=-1}
% {x=1,x=-1}
root_multiplicities;
{3,3}
% {3,3}
off multiplicities;
i_solve((x^4 - 1)^3, x, multiplicities);
{x=1,x=1,x=1,x=-1,x=-1,x=-1}
% {x=1,x=1,x=1,x=-1,x=-1,x=-1}
root_multiplicities;
{}
% {}
i_solve((x^4 - 1)^3, x, expand, noeqs);
{1,1,1,-1,-1,-1}
% {1,1,1,-1,-1,-1}
root_multiplicities;
{}
% {}
i_solve((x^4 - 1)^3, x, together);
{{x=1,3},{x=-1,3}}
% {{x=1,3},{x=-1,3}}
root_multiplicities;
{}
% {}
i_solve((x^4 - 1)^3, x, together, noeqs);
{{1,3},{-1,3}}
% {{1,3},{-1,3}}
root_multiplicities;
{}
% {}
i_solve((x^4 - 1)^3, x, nomul);
{x=-1,x=1}
% {x=-1,x=1}
root_multiplicities;
{}
% {}
% Test of error handling:
% ======================
on errcont;
r_solve();
***** r/i_solve called with no equations
% ***** r/i_solve called with no equations
r_solve(x^2 - a, x);
2
***** - a + x invalid as univariate polynomial over Z
% 2
% ***** - a + x invalid as univariate polynomial over Z
r_solve(x^2 - 1, x, foo);
***** foo invalid as optional r/i_solve argument
% ***** foo invalid as optional r/i_solve argument
r_solve({x^2 - 1}, x);
2
***** {x - 1} invalid as univariate polynomial over Z
% 2
% ***** {x - 1} invalid as univariate polynomial over Z
on complex;
i_solve((x-1)*(x-i), x);
2
***** - i*x + i + x - x invalid as univariate polynomial over Z
% 2
% ***** - i*x + i + x - x invalid as univariate polynomial over Z
end$
4: 4: 4: 4: 4: 4: 4: 4: 4:
Time for test: 150 ms
5: 5:
Quitting
Sun Jan 3 23:47:53 MET 1999