/* arith07.c Copyright (C) 1990 Codemist Ltd */
/*
* Arithmetic functions. negation plus a load of Common Lisp things
* for support of complex numbers.
*
* Version 1.2 May 1990.
*/
/* Signature: 6048ef3e 31-May-1997 */
#include <stdarg.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
#include "machine.h"
#include "tags.h"
#include "cslerror.h"
#include "externs.h"
#include "arith.h"
#ifdef TIMEOUT
#include "timeout.h"
#endif
Lisp_Object copyb(Lisp_Object a)
/*
* copy a bignum.
*/
{
Lisp_Object b, nil;
int32 len = bignum_length(a), i;
push(a);
b = getvector(TAG_NUMBERS, TYPE_BIGNUM, len);
pop(a);
errexit();
len = (len >> 2) - 1;
for (i=0; i<len; i++)
bignum_digits(b)[i] = bignum_digits(a)[i];
return b;
}
Lisp_Object negateb(Lisp_Object a)
/*
* Negate a bignum. Note that negating the 1-word bignum
* value of 0x08000000 will produce a fixnum as a result,
* which might confuse the caller... in a similar way negating
* the value -0x40000000 will need to promote from a one-word
* bignum to a 2-word bignum. How messy just for negation!
*/
{
Lisp_Object b, nil;
int32 len = bignum_length(a), i, carry;
if (len == 8) /* one-word bignum - do specially */
{ len = -(int32)bignum_digits(a)[0];
if (len == fix_mask) return fixnum_of_int(len);
else if (len == 0x40000000) return make_two_word_bignum(0, len);
else return make_one_word_bignum(len);
}
push(a);
b = getvector(TAG_NUMBERS, TYPE_BIGNUM, len);
pop(a);
errexit();
len = (len >> 2) - 2;
carry = -1;
for (i=0; i<len; i++)
{ carry = clear_top_bit(~bignum_digits(a)[i]) + top_bit(carry);
bignum_digits(b)[i] = clear_top_bit(carry);
}
/*
* Handle the top digit separately since it is signed.
*/
carry = ~bignum_digits(a)[i] + top_bit(carry);
if (!signed_overflow(carry))
{
/*
* If the most significant word ends up as -1 then I just might
* have 0x40000000 in the next word down and so I may need to shrink
* the number. Since I handled 1-word bignums specially I have at
* least two words to deal with here.
*/
if (carry == -1 && (bignum_digits(b)[i-1] & 0x40000000) != 0)
{ bignum_digits(b)[i-1] |= ~0x7fffffff;
numhdr(b) -= pack_hdrlength(1);
if ((i & 1) == 0) bignum_digits(b)[i] = 0;
else bignum_digits(b)[i] = make_bighdr(2);
}
else bignum_digits(b)[i] = carry; /* no shrinking needed */
return b;
}
/*
* Here I have overflow: this can only happen when I negate a number
* that started off with 0xc0000000 in the most significant digit,
* and I have to pad a zero word onto the front.
*/
bignum_digits(b)[i] = clear_top_bit(carry);
return lengthen_by_one_bit(b, carry);
}
/*
* generic negation
*/
Lisp_Object negate(Lisp_Object a)
{
#ifdef COMMON
Lisp_Object nil; /* needed for errexit() */
#endif
switch ((int)a & TAG_BITS)
{
case TAG_FIXNUM:
{ int32 aa = -int_of_fixnum(a);
/*
* negating the number -#x8000000 (which is a fixnum) yields a value
* which just fails to be a fixnum.
*/
if (aa != 0x08000000) return fixnum_of_int(aa);
else return make_one_word_bignum(aa);
}
#ifdef COMMON
case TAG_SFLOAT:
{ Float_union aa;
aa.i = a - TAG_SFLOAT;
aa.f = (float) (-aa.f);
return (aa.i & ~(int32)0xf) + TAG_SFLOAT;
}
#endif
case TAG_NUMBERS:
{ int32 ha = type_of_header(numhdr(a));
switch (ha)
{
case TYPE_BIGNUM:
return negateb(a);
#ifdef COMMON
case TYPE_RATNUM:
{ Lisp_Object n = numerator(a),
d = denominator(a);
push(d);
n = negate(n);
pop(d);
errexit();
return make_ratio(n, d);
}
case TYPE_COMPLEX_NUM:
{ Lisp_Object r = real_part(a),
i = imag_part(a);
push(i);
r = negate(r);
pop(i);
errexit();
push(r);
i = negate(i);
pop(r);
errexit();
return make_complex(r, i);
}
#endif
default:
return aerror1("bad arg for minus", a);
}
}
case TAG_BOXFLOAT:
{ double d = float_of_number(a);
return make_boxfloat(-d, type_of_header(flthdr(a)));
}
default:
return aerror1("bad arg for minus", a);
}
}
/*****************************************************************************/
/*** Transcendental functions etcetera. ***/
/*****************************************************************************/
/*
* Much of the code here is extracted from the portable Fortran library
* used by Codemist with its Fortran compiler.
*/
/*
* The object of the following macro is to adjust the floating point
* variables concerned so that the more significant one can be squared
* with NO LOSS OF PRECISION. It is only used when there is no danger
* of over- or under-flow.
*
* This code is NOT PORTABLE but can be modified for use elsewhere
* It should, however, serve for IEEE and IBM FP formats.
*/
#define _fp_normalize(high, low) \
{ double temp; /* access to representation */ \
temp = high; /* take original number */ \
((int32 *)&temp)[current_fp_rep & FP_WORD_ORDER] = 0; \
/* make low part of mantissa 0 */ \
low += (high - temp); /* add into low-order result */ \
high = temp; \
}
#ifdef COMMON
double MS_CDECL Cabs(Complex z)
{
/*
* Obtain the absolute value of a complex number - note that the main
* agony here is in ensuring that neither overflow nor underflow can
* wreck the calculation. Given ideal arithmetic the sum could be carried
* through as just sqrt(x^2 + y^2).
*/
double x = z.real, y = z.imag;
double scale;
int n1, n2;
if (x==0.0) return fabs(y);
else if (y==0.0) return fabs(x);
(void)frexp(x, &n1);
(void)frexp(y, &n2);
/* The exact range of values returned by frexp does not matter here */
if (n2>n1) n1 = n2;
/* n1 is now the exponent of the larger (in absolute value) of x, y */
scale = ldexp(1.0, n1); /* can not be 0.0 */
x /= scale;
y /= scale;
/* The above scaling operation introduces no rounding error (since the */
/* scale factor is exactly a power of 2). It reduces the larger of x, y */
/* to be somewhere near 1.0 so overflow in x*x+y*y is impossible. It is */
/* still possible that one of x*x and y*y will underflow (but not both) */
/* but this is harmless. */
return scale * sqrt(x*x + y*y);
}
Complex MS_CDECL Ccos(Complex z)
{
double x = z.real, y = z.imag;
/*
* cos(x + iy) = cos(x)*cosh(y) - i sin(x)*sinh(y)
* For smallish y this can be used directly. For |y| > 50 I will
* compute sinh and cosh as just +/- exp(|y|)/2
*/
double s = sin(x), c = cos(x);
double absy = fabs(y);
if (absy <= 50.0)
{ double sh = sinh(y), ch = cosh(y);
z.real = c*ch;
z.imag = - s*sh;
return z;
}
else
{
double w;
int n = _reduced_exp(absy, &w) - 1;
z.real = ldexp(c*w, n);
if (y < 0.0) z.imag = ldexp(s*w, n);
else z.imag = ldexp(-s*w, n);
return z;
}
}
static double reduced_power(double a, int n)
{
/*
* Compute (1 + a)^n - 1 avoiding undue roundoff error.
* Assumes n >= 1 on entry and that a is small.
*/
if (n == 1) return a;
{ double d = reduced_power(a, n/2);
d = (2.0 + d)*d;
if (n & 1) d += (1.0 + d)*a;
return d;
}
}
/*
* The following values are included for documentation purposes - they
* give the largest args that can be given to exp() without leading to
* overflow on IBM mainframe and IEEE machines.
* #ifdef IBMFLOAT
* #define _exp_arg_limit 174.673089501106208
* #else
* #define _exp_arg_limit 709.78271289338397
* #endif
* Note that in any case exp(50.0) will not overflow (it is only 5.2e21),
* so it can be evaluated the simple direct way.
*/
int _reduced_exp(double x, double *r)
{
/*
* (*r) = exp(x)/2^n; return n;
* where n will be selected so that *r gets set to a fairly small value
* (precise range of r unimportant provided it will be WELL away from
* chances of overflow, even when exp(x) would actually overflow). This
* function may only be called with argument x that is positive and
* large enough that n will end up satisfying n>=1. The coding here
* will ensure that if x>4.0, and in general the use of this function
* will only be for x > 50.
* For IBM hardware it would be good to be able to control the value
* of n mod 4, maybe, to help counter wobbling precision. This is not
* done here.
*/
int n;
double f;
n = (int)(x / 7.625 + 0.5);
/*
* 7.625 = 61/8 and is expected to have an exact floating point
* representation here, so f is computed without any rounding error.
* (do I need something like the (x - 0.5) - 0.5 trick here?)
*/
f = exp(x - 7.625*(double)n);
/*
* the magic constant is ((exp(61/8) / 2048) - 1) and it arises because
* 61/88 is a decent rational approximation to log(2), hence exp(61/8)
* is almost 2^11. Thus I compute exp(x) as
* 2^(11*n) * (exp(61/8)/2^11)^n * exp(f)
* The first factor is exact, the second is (1+e)^n where e is small and
* n is an integer, so can be computer accurately, and the residue f at the
* end is small enough not to give over-bad trouble.
* The numeric constant given here was calculated with the REDUCE 3.3
* bigfloat package.
*/
#define _e61q8 3.81086435594567676751e-4
*r = reduced_power(_e61q8, n)*f + f;
#undef _e61q8
return 11*n;
}
Complex MS_CDECL Cexp(Complex z)
{
double x = z.real, y = z.imag;
/*
* value is exp(x)*(cos(y) + i sin(y)) but have care with overflow
* Here (and throughout the complex library) there is an opportunity
* to save time by computing sin(y) and cos(y) together. Since this
* code is (to begin with) to sit on top of an arbitrary C library,
* perhaps with hardware support for the calculation of real-valued
* trig functions I am not going to try to realise this saving.
*/
double s = sin(y), c = cos(y);
/*
* if x > 50 I will use a cautious sceme which computes exp(x) with
* its (binary) exponent separated. Note that 50.0 is chosen as a
* number noticably smaller than _exp_arg_limit (exp(50) = 5.18e21),
* but is not a critical very special number.
*/
if (x <= 50.0) /* includes x < 0.0, of course */
{ double w = exp(x);
z.real = w*c;
z.imag = w*s;
return z;
}
else
{ double w;
int n = _reduced_exp(x, &w);
z.real = ldexp(w*c, n);
z.imag = ldexp(w*s, n);
return z;
}
}
Complex MS_CDECL Cln(Complex z)
{
double x = z.real, y = z.imag;
/*
* if x and y are both very large then cabs(z) may be out of range
* even though log or if is OK. Thus it is necessary to perform an
* elaborate scaled calculation here, and not just
* z.real = log(cabs(z));
*/
double scale, r;
int n1, n2;
if (x==0.0) r = log(fabs(y));
else if (y==0.0) r = log(fabs(x));
else
{
(void)frexp(x, &n1);
(void)frexp(y, &n2);
/* The exact range of values returned by frexp does not matter here */
if (n2>n1) n1 = n2;
scale = ldexp(1.0, n1);
x /= scale;
y /= scale;
r = log(scale) + 0.5*log(x*x + y*y);
}
z.real = r;
/*
* The C standard is not very explicit about the behaviour of atan2(0.0, -n)
* while for Fortran it is necessary that this returns +pi not -pi. Hence
* with extreme caution I put a special test here.
*/
if (y == 0.0)
if (x < 0.0) z.imag = _pi;
else z.imag = 0.0;
else z.imag = atan2(y, x);
return z;
}
/*
* Complex raising to a power. This seems to be pretty nasty
* to get right, and the code includes extra high precision variants
* on atan() and log(). Further refinements wrt efficiency may be
* possible later on.
* This code has been partially tested, and seems to be uniformly
* better than using just a**b = exp(b*log(a)), but much more careful
* study is needed before it can possibly be claimed that it is
* right in the sense of not throwing away accuracy when it does not
* have to. I also need to make careful checks to verify that the
* correct (principal) value is computed.
*/
/*
* The next function is used after arithmetic has been done on extra-
* precision numbers so that the relationship between high and low parts
* is no longer known. Re-instate it.
*/
#define _two_minus_25 2.98023223876953125e-8 /* 2^(-25) */
static double fp_add(double a, double b, double *lowres)
{
/* Result is the high part of a+b, with the low part assigned to *lowres */
double absa, absb;
if (a >= 0.0) absa = a; else absa = -a;
if (b >= 0.0) absb = b; else absb = -b;
if (absa < absb)
{ double t = a; a = b; b = t;
}
/* Now a is the larger (in absolute value) of the two numbers */
if (absb > absa * _two_minus_25)
{ double al = 0.0, bl = 0.0;
/*
* If the exponent difference beweeen a and b is no more than 25 then
* I can add the top part (20 or 24 bits) of a to the top part of b
* without going beyond the 52 or 56 bits that a full mantissa can hold.
*/
_fp_normalize(a, al);
_fp_normalize(b, bl);
a = a + b; /* No rounding needed here */
b = al + bl;
if (a == 0.0)
{ a = b;
b = 0.0;
}
}
/*
* The above step leaves b small wrt the value in a (unless a+b led
* to substantial cancellation of leading digits), but leaves the high
* part a with bits everywhere. Force low part of a to zero.
*/
{ double al = 0.0;
_fp_normalize(a, al);
b = b + al;
}
if (a >= 0.0) absa = a; else absa = -a;
if (b >= 0.0) absb = b; else absb = -b;
if (absb > absa * _two_minus_25)
/*
* If on input a is close to -b, then a+b is close to zero. In this
* case the exponents of a abd b matched, and so earlier calculations
* have all been done exactly. Go around again to split residue into
* high and low parts.
*/
{ double al = 0.0, bl = 0.0;
_fp_normalize(b, bl);
a = a + b;
_fp_normalize(a, al);
b = bl + al;
}
*lowres = b;
return a;
}
#undef _two_minus_25
static void extended_atan2(double b, double a, double *thetah, double *thetal)
{
int octant;
double rh, rl, thh, thl;
/*
* First reduce the argument to the first octant (i.e. a, b both +ve,
* and b <= a).
*/
if (b < 0.0)
{ octant = 4;
a = -a;
b = -b;
}
else octant = 0;
if (a < 0.0)
{ double t = a;
octant += 2;
a = b;
b = -t;
}
if (b > a)
{ double t = a;
octant += 1;
a = b;
b = t;
}
{ static struct { double h; double l;} _atan[] = {
/*
* The table here gives atan(n/16) in 1.5-precision for n=0..16
* Note that all the magic numbers used in this file were calculated
* using the REDUCE bigfloat package, and all the 'exact' parts have
* a denominator of at worst 2^26 and so are expected to have lots
* of trailing zero bits in their floating point representation.
*/
{ 0.0, 0.0 },
{ 0.06241881847381591796875, -0.84778585694947708870e-8 },
{ 0.124355018138885498046875, -2.35921240630155201508e-8 },
{ 0.185347974300384521484375, -2.43046897565983490387e-8 },
{ 0.2449786663055419921875, -0.31786778380154175187e-8 },
{ 0.302884876728057861328125, -0.83530864557675689054e-8 },
{ 0.358770668506622314453125, 0.17639499059427950639e-8 },
{ 0.412410438060760498046875, 0.35366268088529162896e-8 },
{ 0.4636476039886474609375, 0.50121586552767562314e-8 },
{ 0.512389481067657470703125, -2.07569197640365239794e-8 },
{ 0.558599293231964111328125, 2.21115983246433832164e-8 },
{ 0.602287352085113525390625, -0.59501493437085023057e-8 },
{ 0.643501102924346923828125, 0.58689374629746842287e-8 },
{ 0.6823165416717529296875, 1.32029951485689299817e-8 },
{ 0.71882998943328857421875, 1.01883359311982641515e-8 },
{ 0.75315129756927490234375, -1.66070805128190106297e-8 },
{ 0.785398185253143310546875, -2.18556950009312141541e-8 }
};
int k = (int)(16.0*(b/a + 0.03125)); /* 0 to 16 */
double kd = (double)k/16.0;
double ah = a, al = 0.0,
bh = b, bl = 0.0,
ch, cl, q, q2;
_fp_normalize(ah, al);
_fp_normalize(bh, bl);
ch = bh - ah*kd; cl = bl - al*kd;
ah = ah + bh*kd; al = al + bl*kd;
bh = ch; bl = cl;
/* Now |(a/b)| <= 1/32 */
ah = fp_add(ah, al, &al); /* Re-normalise */
bh = fp_add(bh, bl, &bl);
/* Compute approximation to b/a */
rh = (bh + bl)/(ah + al); rl = 0.0;
_fp_normalize(rh, rl);
bh -= ah*rh; bl -= al*rh;
rl = (bh + bl)/(ah + al); /* Quotient now formed */
/*
* Now it is necessary to compute atan(q) to one-and-a-half precision.
* Since |q| < 1/32 I will leave just q as the high order word of
* the result and compute atan(q)-q as a single precision value. This
* gives about 16 bits accuracy beyond regular single precision work.
*/
q = rh + rl;
q2 = q*q;
/* The expansion the follows could be done better using a minimax poly */
rl -= q*q2*(0.33333333333333333333 -
q2*(0.20000000000000000000 -
q2*(0.14285714285714285714 -
q2*(0.11111111111111111111 -
q2* 0.09090909090909090909))));
/* OK - now (rh, rl) is atan(reduced b/a). Need to add on atan(kd) */
rh += _atan[k].h;
rl += _atan[k].l;
}
/*
* The following constants give high precision versions of pi and pi/2,
* and the high partwords (p2h and pih) have lots of low order zero bits
* in their binary representation. Expect (=require) that the arithmetic
* that computes thh is done without introduced rounding error.
*/
#define _p2h 1.57079632580280303955078125
#define _p2l 9.92093579680540441639751e-10
#define _pih 3.14159265160560607910156250
#define _pil 1.984187159361080883279502e-9
switch (octant)
{
default:
case 0: thh = rh; thl = rl; break;
case 1: thh = _p2h - rh; thl = _p2l - rl; break;
case 2: thh = _p2h + rh; thl = _p2l + rl; break;
case 3: thh = _pih - rh; thl = _pil - rl; break;
case 4: thh = -_pih + rh; thl = -_pil + rl; break;
case 5: thh = -_p2h - rh; thl = -_p2l - rl; break;
case 6: thh = -_p2h + rh; thl = -_p2l + rl; break;
case 7: thh = -rh; thl = -rl; break;
}
#undef _p2h
#undef _p2l
#undef _pih
#undef _pil
*thetah = fp_add(thh, thl, thetal);
}
static void extended_log(int k, double a, double b,
double *logrh, double *logrl)
{
/*
* If we had exact arithmetic this procedure could be:
* k*log(2) + 0.5*log(a^2 + b^2)
*/
double al = 0.0, bl = 0.0, all = 0.0, bll = 0.0, c, ch, cl, cll;
double w, q, qh, ql, rh, rl;
int n;
/*
* First (a^2 + b^2) is calculated, using extra precision.
* Because any rounding at this stage can lead to bad errors in
* the power that I eventually want to compute, I use 3-word
* arithmetic here, and with the version of _fp_normalize given
* above and IEEE or IBM370 arithmetic this part of the
* computation is exact.
*/
_fp_normalize(a, al); _fp_normalize(al, all);
_fp_normalize(b, bl); _fp_normalize(bl, bll);
ch = a*a + b*b;
cl = 2.0*(a*al + b*bl);
cll = (al*al + bl*bl) +
all*(2.0*(a + al) + all) +
bll*(2.0*(b + bl) + bll);
_fp_normalize(ch, cl);
_fp_normalize(cl, cll);
c = ch + (cl + cll); /* single precision approximation */
/*
* At this stage the scaling of the input value will mean that we
* have 0.25 <= c <= 2.0
*
* Now rewrite things as
* (2*k + n)*log(s) + 0.5*log((a^2 + b^2)/2^n))
* where s = sqrt(2)
* and where the arg to the log is in sqrt(0.5), sqrt(2)
*/
#define _sqrt_half 0.70710678118654752440
#define _sqrt_two 1.41421356237309504880
k = 2*k;
while (c < _sqrt_half)
{ k -= 1;
ch *= 2.0;
cl *= 2.0;
cll *= 2.0;
c *= 2.0;
}
while (c > _sqrt_two)
{ k += 1;
ch *= 0.5;
cl *= 0.5;
cll *= 0.5;
c *= 0.5;
}
#undef _sqrt_half
#undef _sqrt_two
n = (int)(16.0/c + 0.5);
w = (double)n / 16.0;
ch *= w;
cl *= w;
cll *= w; /* Now |c-1| < 0.04317 */
ch = (ch - 0.5) - 0.5;
ch = fp_add(ch, cl, &cl);
cl = cl + cll;
/*
* (ch, cl) is now the reduced argument ready for calculating log(1+c),
* and now that the reduction is over I can drop back to the use of just
* two doubleprecision values to represent c.
*/
c = ch + cl;
qh = c / (2.0 + c);
ql = 0.0;
_fp_normalize(qh, ql);
ql = ((ch - qh*(2.0 + ch)) + cl - qh*cl) / (2.0 + c);
/* (qh, ql) is now c/(2.0 + c) */
rh = qh; /* 18 bits bigger than low part will end up */
q = qh + ql;
w = q*q;
rl = ql + q*w*(0.33333333333333333333 +
w*(0.20000000000000000000 +
w*(0.14285714285714285714 +
w*(0.11111111111111111111 +
w*(0.09090909090909090909)))));
/*
* (rh, rl) is now atan(c) correct to double precision plus about 18 bits.
*/
{ double temp;
static struct { double h; double l; } _log_table[] = {
/*
* The following values are (in extra precision) -log(n/16)/2 for n
* in the range 11 to 23 (i.e. roughly over sqrt(2)/2 to sqrt(2))
*/
{ 0.1873466968536376953125, 2.786706765149099245e-8 },
{ 0.1438410282135009765625, 0.801238948715710950e-8 },
{ 0.103819668292999267578125, 1.409612298322959552e-8 },
{ 0.066765725612640380859375, -2.930037906928620319e-8 },
{ 0.0322692394256591796875, 2.114312640614896196e-8 },
{ 0.0, 0.0 },
{ -0.0303122997283935546875, -1.117982386660280307e-8 },
{ -0.0588915348052978515625, 1.697710612429310295e-8 },
{ -0.08592510223388671875, -2.622944289242004947e-8 },
{ -0.111571788787841796875, 1.313073691899185245e-8 },
{ -0.135966837406158447265625, -2.033566243215020975e-8 },
{ -0.159226894378662109375, 2.881939480146987639e-8 },
{ -0.18145275115966796875, 0.431498374218108783e-8 }};
rh = fp_add(rh, _log_table[n-11].h, &temp);
rl = temp + _log_table[n-11].l + rl;
}
#define _exact_part_logroot2 0.3465735912322998046875
#define _approx_part_logroot2 (-9.5232714997888393927e-10)
/* Multiply this by k and add it in */
{ double temp, kd = (double)k;
rh = fp_add(rh, kd*_exact_part_logroot2, &temp);
rl = rl + temp + kd*_approx_part_logroot2;
}
#undef _exact_part_logroot2
#undef _approx_part_logroot2
*logrh = rh;
*logrl = rl;
return;
}
Complex MS_CDECL Cpow(Complex z1, Complex z2)
{
double a = z1.real, b = z1.imag,
c = z2.real, d = z2.imag;
int k, m, n;
double scale;
double logrh, logrl, thetah, thetal;
double r, i, rh, rl, ih, il, clow, dlow, q;
double cw, sw, cost, sint;
if (b == 0.0 && d == 0.0 && a >= 0.0)/* Simple case if both args are real */
{ z1.real = pow(a, c);
z1.imag = 0.0;
return z1;
}
/*
* Start by scaling z1 by dividing out a power of 2 so that |z1| is
* fairly close to 1
*/
if (a == 0.0)
{ if (b == 0.0) return z1; /* 0.0**anything is really an error */
/* The exact values returned by frexp do not matter here */
(void)frexp(b, &k);
}
else
{ (void)frexp(a, &k);
if (b != 0.0)
{ int n;
(void)frexp(b, &n);
if (n > k) k = n;
}
}
scale = ldexp(1.0, k);
a /= scale;
b /= scale;
/*
* The idea next is to express z1 as r*exp(i theta), then z1**z2
* is exp(z2*log(z1)) and the exponent simplifies to
* (c*log r - d*theta) + i(c theta + d log r).
* Note r = scale*sqrt(a*a + b*b) now.
* The argument for exp() must be computed to noticably more than
* regular precision, since otherwise exp() greatly magnifies the
* error in the real part (if it is large and positive) and range
* reduction in the imaginary part can equally lead to accuracy
* problems. Neither c nor d can usefully be anywhere near the
* extreme range of floating point values, so I will not even try
* to scale them, thus I will end up happy(ish) if I can compute
* atan2(b, a) and log(|z1|) in one-and-a-half precision form.
* It would be best to compute theta in units of pi/4 rather than in
* raidians, since then the case of z^n (integer n) with arg(z) an
* exact multiple of pi/4 would work out better. However at present I
* just hope that the 1.5-precision working is good enough.
*/
extended_atan2(b, a, &thetah, &thetal);
extended_log(k, a, b, &logrh, &logrl);
/* Normalise all numbers */
clow = 0.0;
dlow = 0.0;
_fp_normalize(c, clow);
_fp_normalize(d, dlow);
/* (rh, rl) = c*logr - d*theta; */
rh = c*logrh - d*thetah; /* No rounding in this computation */
rl = c*logrl + clow*(logrh + logrl) - d*thetal - dlow*(thetah + thetal);
/* (ih, il) = c*theta + d*logr; */
ih = c*thetah + d*logrh; /* No rounding in this computation */
il = c*thetal + clow*(thetah + thetal) + d*logrl + dlow*(logrh + logrl);
/*
* Now it remains to take the exponential of the extended precision
* value in ((rh, rl), (ih, il)).
* Range reduce the real part by multiples of log(2), and the imaginary
* part by multiples of pi/2.
*/
rh = fp_add(rh, rl, &rl); /* renormalise */
r = rh + rl; /* Approximate value */
#define _recip_log_2 1.4426950408889634074
q = r * _recip_log_2;
m = (q < 0.0) ? (int)(q - 0.5) : (int)(q + 0.5);
q = (double)m;
#undef _recip_log_2
/*
* log 2 = 11629080/2^24 - 0.000 00000 19046 54299 95776 78785
* to reasonable accuracy. It is vital that the exact part be
* read in as a number with lots of low zero bits, so when it gets
* multiplied by the integer q there is NO rounding needed.
*/
#define _exact_part_log2 0.693147182464599609375
#define _approx_part_log2 (-1.9046542999577678785418e-9)
rh = rh - q*_exact_part_log2;
rl = rl - q*_approx_part_log2;
#undef _exact_part_log2
#undef _approx_part_log2
r = exp(rh + rl); /* This should now be accurate enough */
ih = fp_add(ih, il, &il);
i = ih + il; /* Approximate value */
#define _recip_pi_by_2 0.6366197723675813431
q = i * _recip_pi_by_2;
n = (q < 0.0) ? (int)(q - 0.5) : (int)(q + 0.5);
q = (double)n;
/*
* pi/2 = 105414357/2^26 + 0.000 00000 09920 93579 68054 04416 39751
* to reasonable accuracy. It is vital that the exact part be
* read in as a number with lots of low zero bits, so when it gets
* multiplied by the integer q there is NO rounding needed.
*/
#define _exact_part_pi2 1.57079632580280303955078125
#define _approx_part_pi2 9.92093579680540441639751e-10
ih = ih - q*_exact_part_pi2;
il = il - q*_approx_part_pi2;
#undef _recip_pi_by_2
#undef _exact_part_pi2
#undef _approx_part_pi2
i = ih + il; /* Now accurate enough */
/*
* Having done super-careful range reduction I can call the regular
* sin/cos routines here. If sin/cos could both be computed together
* that could speed things up a little bit, but by this stage they have
* not much in common.
*/
cw = cos(i);
sw = sin(i);
switch (n & 3) /* quadrant control */
{
default:
case 0: cost = cw; sint = sw; break;
case 1: cost = -sw; sint = cw; break;
case 2: cost = -cw; sint = -sw; break;
case 3: cost = sw; sint = -cw; break;
}
/*
* Now, at long last, I can assemble the results and return.
*/
z1.real = ldexp(r*cost, m);
z1.imag = ldexp(r*sint, m);
return z1;
}
/*
* End of complex-to-complex-power code.
*/
#endif
/* end of arith07.c */