% Problem: Calculate the PDE's for the isovector of the heat equation.
% --------
% (c.f. B.K. Harrison, f.B. Estabrook, "Geometric Approach...",
% J. Math. Phys. 12, 653, 1971)
% The heat equation @ psi = @ psi is equivalent to the set of exterior
% xx t
% equations (with u=@ psi, y=@ psi):
% T x
pform {psi,u,x,y,t}=0,a=1,{da,b}=2;
a := d psi - u*d t - y*d x;
da := - d u^d t - d y^d x;
b := u*d x^d t - d y^d t;
% Now calculate the PDE's for the isovector.
tvector v;
pform {vpsi,vt,vu,vx,vy}=0;
fdomain vpsi=vpsi(psi,t,u,x,y),vt=vt(psi,t,u,x,y),vu=vu(psi,t,u,x,y),
vx=vx(psi,t,u,x,y),vy=vy(psi,t,u,x,y);
v := vpsi*@ psi + vt*@ t + vu*@ u + vx*@ x + vy*@ y;
factor d;
on rat;
i1 := v |_ a - l*a;
pform o=1;
o := ot*d t + ox*d x + ou*d u + oy*d y;
fdomain f=f(psi,t,u,x,y);
i11 := v _| d a - l*a + d f;
let vx=-@(f,y),vt=-@(f,u),vu=@(f,t)+u*@(f,psi),vy=@(f,x)+y*@(f,psi),
vpsi=f-u*@(f,u)-y*@(f,y);
factor ^;
i2 := v |_ b - xi*b - o^a + zeta*da;
let ou=0,oy=@(f,u,psi),ox=-u*@(f,u,psi),
ot=@(f,x,psi)+u*@(f,y,psi)+y*@(f,psi,psi);
i2;
let zeta=-@(f,u,x)-@(f,u,y)*u-@(f,u,psi)*y;
i2;
let xi=-@(f,t,u)-u*@(f,u,psi)+@(f,x,y)+u*@(f,y,y)+y*@(f,y,psi)+@(f,psi);
i2;
let @(f,u,u)=0;
i2; % These PDE's have to be solved.
clear a,da,b,v,i1,i11,o,i2,xi,t;
remfdomain f,vpsi,vt,vu,vx,vy;
clear @(f,u,u);
% Problem:
% --------
% Calculate the integrability conditions for the system of PDE's:
% (c.f. B.F. Schutz, "Geometrical Methods of Mathematical Physics"
% Cambridge University Press, 1984, p. 156)
% @ z /@ x + a1*z + b1*z = c1
% 1 1 2
% @ z /@ y + a2*z + b2*z = c2
% 1 1 2
% @ z /@ x + f1*z + g1*z = h1
% 2 1 2
% @ z /@ y + f2*z + g2*z = h2
% 2 1 2 ;
pform w(k)=1,integ(k)=4,{z(k),x,y}=0,{a,b,c,f,g,h}=1,
{a1,a2,b1,b2,c1,c2,f1,f2,g1,g2,h1,h2}=0;
fdomain a1=a1(x,y),a2=a2(x,y),b1=b1(x,y),b2=b2(x,y),
c1=c1(x,y),c2=c2(x,y),f1=f1(x,y),f2=f2(x,y),
g1=g1(x,y),g2=g2(x,y),h1=h1(x,y),h2=h2(x,y);
a:=a1*d x+a2*d y$
b:=b1*d x+b2*d y$
c:=c1*d x+c2*d y$
f:=f1*d x+f2*d y$
g:=g1*d x+g2*d y$
h:=h1*d x+h2*d y$
% The equivalent exterior system:
factor d;
w(1) := d z(-1) + z(-1)*a + z(-2)*b - c;
w(2) := d z(-2) + z(-1)*f + z(-2)*g - h;
indexrange 1,2;
factor z;
% The integrability conditions:
integ(k) := d w(k) ^ w(1) ^ w(2);
clear a,b,c,f,g,h,x,y,w(k),integ(k),z(k);
remfdomain a1,a2,b1,c1,c2,f1,f2,g1,g2,h1,h2;
% Problem:
% --------
% Calculate the PDE's for the generators of the d-theta symmetries of
% the Lagrangian system of the planar Kepler problem.
% c.f. W.Sarlet, F.Cantrijn, Siam Review 23, 467, 1981
% Verify that time translation is a d-theta symmetry and calculate the
% corresponding integral.
pform {t,q(k),v(k),lam(k),tau,xi(k),eta(k)}=0,theta=1,f=0,
{l,glq(k),glv(k),glt}=0;
tvector gam,y;
indexrange 1,2;
fdomain tau=tau(t,q(k),v(k)),xi=xi(t,q(k),v(k)),f=f(t,q(k),v(k));
l := 1/2*(v(1)**2 + v(2)**2) + m/r$ % The Lagrangian.
pform r=0;
fdomain r=r(q(k));
let @(r,q 1)=q(1)/r,@(r,q 2)=q(2)/r,q(1)**2+q(2)**2=r**2;
lam(k) := -m*q(k)/r; % The force.
gam := @ t + v(k)*@(q(k)) + lam(k)*@(v(k))$
eta(k) := gam _| d xi(k) - v(k)*gam _| d tau$
y := tau*@ t + xi(k)*@(q(k)) + eta(k)*@(v(k))$ % Symmetry generator.
theta := l*d t + @(l,v(k))*(d q(k) - v(k)*d t)$
factor @;
s := y |_ theta - d f$
glq(k) := @(q k) _| s;
glv(k) := @(v k) _| s;
glt := @(t) _| s;
% Translation in time must generate a symmetry.
xi(k) := 0;
tau := 1;
glq k := glq k;
glv k := glv k;
glt;
% The corresponding integral is of course the energy.
integ := - y _| theta;
clear l,lam k,gam,eta k,y,theta,s,glq k,glv k,glt,t,q k,v k,tau,xi k;
remfdomain r,f,tau,xi;
% Problem:
% --------
% Calculate the "gradient" and "Laplacian" of a function and the "curl"
% and "divergence" of a one-form in elliptic coordinates.
coframe e u = sqrt(cosh(v)**2 - sin(u)**2)*d u,
e v = sqrt(cosh(v)**2 - sin(u)**2)*d v,
e phi = cos u*sinh v*d phi;
pform f=0;
fdomain f=f(u,v,phi);
factor e,^;
on rat,gcd;
order cosh v, sin u;
% The gradient:
d f;
factor @;
% The Laplacian:
# d # d f;
% Another way of calculating the Laplacian:
-#vardf(1/2*d f^#d f,f);
remfac @;
% Now calculate the "curl" and the "divergence" of a one-form.
pform w=1,a(k)=0;
fdomain a=a(u,v,phi);
w := a(-k)*e k;
% The curl:
x := # d w;
factor @;
% The divergence:
y := # d # w;
remfac @;
clear x,y,w,u,v,phi,e k,a k;
remfdomain a,f;
% Problem:
% --------
% Calculate in a spherical coordinate system the Navier Stokes equations.
coframe e r=d r, e theta =r*d theta, e phi = r*sin theta *d phi;
frame x;
fdomain v=v(t,r,theta,phi),p=p(r,theta,phi);
pform v(k)=0,p=0,w=1;
% We first calculate the convective derivative.
w := v(-k)*e(k)$
factor e; on rat;
cdv := @(w,t) + (v(k)*x(-k)) |_ w - 1/2*d(v(k)*v(-k));
%next we calculate the viscous terms;
visc := nu*(d#d# w - #d#d w) + mu*d#d# w;
% Finally we add the pressure term and print the components of the
% whole equation.
pform nasteq=1,nast(k)=0;
nasteq := cdv - visc + 1/rho*d p$
factor @;
nast(-k) := x(-k) _| nasteq;
remfac @,e;
clear v k,x k,nast k,cdv,visc,p,w,nasteq,e k;
remfdomain p,v;
% Problem:
% --------
% Calculate from the Lagrangian of a vibrating rod the equation of
% motion and show that the invariance under time translation leads
% to a conserved current.
pform {y,x,t,q,j}=0,lagr=2;
fdomain y=y(x,t),q=q(x),j=j(x);
factor ^;
lagr := 1/2*(rho*q*@(y,t)**2 - e*j*@(y,x,x)**2)*d x^d t;
vardf(lagr,y);
% The Lagrangian does not explicitly depend on time; therefore the
% vector field @ t generates a symmetry. The conserved current is
pform c=1;
factor d;
c := noether(lagr,y,@ t);
% The exterior derivative of this must be zero or a multiple of the
% equation of motion (weak conservation law) to be a conserved current.
remfac d;
d c;
% i.e. it is a multiple of the equation of motion.
clear lagr,c,j,y,q;
remfdomain y,q,j;
% Problem:
% --------
% Show that the metric structure given by Eguchi and Hanson induces a
% self-dual curvature.
% c.f. T. Eguchi, P.B. Gilkey, A.J. Hanson, "Gravitation, Gauge Theories
% and Differential Geometry", Physics Reports 66, 213, 1980
for all x let cos(x)**2=1-sin(x)**2;
pform f=0,g=0;
fdomain f=f(r), g=g(r);
coframe o(r) = f*d r,
o(theta) = (r/2)*(sin(psi)*d theta - sin(theta)*cos(psi)*d phi),
o(phi) = (r/2)*(-cos(psi)*d theta - sin(theta)*sin(psi)*d phi),
o(psi) = (r/2)*g*(d psi + cos(theta)*d phi);
frame e;
pform gamma(a,b)=1,curv2(a,b)=2;
index_symmetries gamma(a,b),curv2(a,b): antisymmetric;
factor o;
gamma(-a,-b) := -(1/2)*( e(-a) _| (e(-c) _| (d o(-b)))
-e(-b) _| (e(-a) _| (d o(-c)))
+e(-c) _| (e(-b) _| (d o(-a))) )*o(c)$
curv2(-a,b) := d gamma(-a,b) + gamma(-c,b)^gamma(-a,c)$
let f=1/g,g=sqrt(1-(a/r)**4);
pform chck(k,l)=2;
index_symmetries chck(k,l): antisymmetric;
% The following has to be zero for a self-dual curvature.
chck(k,l) := 1/2*eps(k,l,m,n)*curv2(-m,-n) + curv2(k,l);
clear gamma(a,b),curv2(a,b),f,g,chck(a,b),o(k),e(k),r,phi,psi;
remfdomain f,g;
% Example: 6-dimensional FRW model with quadratic curvature terms in
% -------
% the Lagrangian (Lanczos and Gauss-Bonnet terms).
% cf. Henriques, Nuclear Physics, B277, 621 (1986)
for all x let cos(x)**2+sin(x)**2=1;
pform {r,s}=0;
fdomain r=r(t),s=s(t);
coframe o(t) = d t,
o(1) = r*d u/(1 + k*(u**2)/4),
o(2) = r*u*d theta/(1 + k*(u**2)/4),
o(3) = r*u*sin(theta)*d phi/(1 + k*(u**2)/4),
o(4) = s*d v1,
o(5) = s*sin(v1)*d v2
with metric g =-o(t)*o(t)+o(1)*o(1)+o(2)*o(2)+o(3)*o(3)
+o(4)*o(4)+o(5)*o(5);
frame e;
on nero; factor o,^;
riemannconx om;
pform curv(k,l)=2,{riemann(a,b,c,d),ricci(a,b),riccisc}=0;
index_symmetries curv(k,l): antisymmetric,
riemann(k,l,m,n): antisymmetric in {k,l},{m,n}
symmetric in {{k,l},{m,n}},
ricci(k,l): symmetric;
curv(k,l) := d om(k,l) + om(k,-m)^om(m,l);
riemann(a,b,c,d) := e(d) _| (e (c) _| curv(a,b));
% The rest is done in the Ricci calculus language,
ricci(-a,-b) := riemann(c,-a,-d,-b)*g(-c,d);
riccisc := ricci(-a,-b)*g(a,b);
pform {laglanc,inv1,inv2} = 0;
index_symmetries riemc3(k,l),riemri(k,l),
hlang(k,l),einst(k,l): symmetric;
pform {riemc3(i,j),riemri(i,j)}=0;
riemc3(-i,-j) := riemann(-i,-k,-l,-m)*riemann(-j,k,l,m)$
inv1 := riemc3(-i,-j)*g(i,j);
riemri(-i,-j) := 2*riemann(-i,-k,-j,-l)*ricci(k,l)$
inv2 := ricci(-a,-b)*ricci(a,b);
laglanc := (1/2)*(inv1 - 4*inv2 + riccisc**2);
pform {einst(a,b),hlang(a,b)}=0;
hlang(-i,-j) := 2*(riemc3(-i,-j) - riemri(-i,-j) -
2*ricci(-i,-k)*ricci(-j,K) +
riccisc*ricci(-i,-j) - (1/2)*laglanc*g(-i,-j));
% The complete Einstein tensor:
einst(-i,-j) := (ricci(-i,-j) - (1/2)*riccisc*g(-i,-j))*alp1 +
hlang(-i,-j)*alp2$
alp1 := 1$
factor alp2;
einst(-i,-j) := einst(-i,-j);
clear o(k),e(k),riemc3(i,j),riemri(i,j),curv(k,l),riemann(a,b,c,d),
ricci(a,b),riccisc,t,u,v1,v2,theta,phi,r,om(k,l),einst(a,b),
hlang(a,b);
remfdomain r,s;
% Problem:
% --------
% Calculate for a given coframe and given torsion the Riemannian part and
% the torsion induced part of the connection. Calculate the curvature.
% For a more elaborate example see E.Schruefer, F.W. Hehl, J.D. McCrea,
% "Application of the REDUCE package EXCALC to the Poincare gauge field
% theory of gravity", GRG Journal, vol. 19, (1988) 197--218
pform {ff, gg}=0;
fdomain ff=ff(r), gg=gg(r);
coframe o(4) = d u + 2*b0*cos(theta)*d phi,
o(1) = ff*(d u + 2*b0*cos(theta)*d phi) + d r,
o(2) = gg*d theta,
o(3) = gg*sin(theta)*d phi
with metric g = -o(4)*o(1)-o(4)*o(1)+o(2)*o(2)+o(3)*o(3);
frame e;
pform {tor(a),gwt(a)}=2,gamma(a,b)=1,
{u1,u3,u5}=0;
index_symmetries gamma(a,b): antisymmetric;
fdomain u1=u1(r),u3=u3(r),u5=u5(r);
tor(4) := 0$
tor(1) := -u5*o(4)^o(1) - 2*u3*o(2)^o(3)$
tor(2) := u1*o(4)^o(2) + u3*o(4)^o(3)$
tor(3) := u1*o(4)^o(3) - u3*o(4)^o(2)$
gwt(-a) := d o(-a) - tor(-a)$
% The following is the combined connection.
% The Riemannian part could have equally well been calculated by the
% RIEMANNCONX statement.
gamma(-a,-b) := (1/2)*( e(-b) _| (e(-c) _| gwt(-a))
+e(-c) _| (e(-a) _| gwt(-b))
-e(-a) _| (e(-b) _| gwt(-c)) )*o(c);
pform curv(a,b)=2;
index_symmetries curv(a,b): antisymmetric;
factor ^;
curv(-a,b) := d gamma(-a,b) + gamma(-c,b)^gamma(-a,c);
clear o(k),e(k),curv(a,b),gamma(a,b),theta,phi,x,y,z,r,s,t,u,v,p,q,c,cs;
remfdomain u1,u3,u5,ff,gg;
showtime;
end;