File r38/packages/normform/smithex1.red artifact c3e84e275c part of check-in ab67b20f90


module smithex1;
%                                                                      %
%**********************************************************************%
  
% The function smithex_int computes the Smith normal form S of an n by
% m rectangular matrix of integers.
%
% Specifically:
%
% - smithex_int(A) will return {S,P,Pinv} where S, P, and Pinv
%   are such that inverse(P)*A*P = S.
    

    
    
symbolic procedure smithex_int(B);
  begin
    scalar Left,Right,isclear,A;
    integer n,m,i,j,k,l,tmp,g,ll,rr,int1,int2,quo1,quo2,r,sgn,rrquo,
            q,input_mode;
   
    matrix_input_test(B);

    input_mode := get(dmode!*,'dname);
    if input_mode = 'modular 
     then rederr "ERROR: smithex_int does not work with modular on.";

    integer_entries_test(B);
    
    A := copy_mat(B);
    
    n := car size_of_matrix(A); %  No. of rows.
    m := cadr size_of_matrix(A); %  No. of columns.
    
    Left := make_identity(n,n) ;
    Right := make_identity(m,m); 
    
    for k:=1:min(n,m) do
    <<
      %
      %  Pivot selection from row k to column k.
      %
      i := k; while i<= n and getmat(A,i,k) = 0 do i:=i+1; 
      j := k; while j<= m and getmat(A,k,j) = 0 do j:=j+1;    
    
      if i>n and j>m then <<>>
      else 
      << 
        %
        %  Select smallest non-zero entry as pivot.
        %
        for l:=i+1:n do
        << 
          if getmat(A,l,k) = 0 then l := l+1
          else if abs(getmat(A,l,k)) < abs(getmat(A,i,k)) then i := l; 
        >>;
     
        for l:=j+1:m do
        <<  
          if getmat(A,k,l) = 0 then l := l+1
          else if abs(getmat(A,k,l)) < abs(getmat(A,k,j)) then j := l;
        >>;
     
        if i<=n and (j>m or abs(getmat(A,i,k))<abs(getmat(A,k,j))) then
        %
        %  Pivot is A(i,k), interchange row k,i if necessary.
        %
        << 
          if i neq k then
          <<
     
            for l:=k:m do
            << 
              tmp:= getmat(A,i,l);
              setmat(A,i,l,getmat(A,k,l));
              setmat(A,k,l,tmp);
            >>;
     
            for l:=1:n do
            << 
              tmp:= getmat(Left,l,i);
              setmat(Left,l,i,getmat(Left,l,k));
              setmat(Left,l,k,tmp);
            >>; 
    
          >> 
        >> 
        else 
        %
        %  Pivot is A(k,j), interchange column k,j if necessary.
        %
        << 
          if j neq k then
          << 
    
            for l:=k:n do
            << 
              tmp:= getmat(A,l,j);
              setmat(A,l,j,getmat(A,l,k));
              setmat(A,l,k,tmp);
            >>; 
    
            for l:=1:m do
            << 
              tmp:= getmat(Right,j,l);
              setmat(Right,j,l,getmat(Right,k,l));
              setmat(Right,k,l,tmp);
            >>; 
    
          >>; 
        >>; 
    
        isclear := nil; 
    
        while not isclear do
        %
        %  0 out column k from k+1 to n.
        %
        << 
          for i:=k+1:n do
          << 
            if getmat(A,i,k) = 0 then <<>>
            else
            << 
              int1 := getmat(A,k,k);
              int2 := getmat(A,i,k);
              tmp := (calc_exgcd_int(int1,int2));
              g := car tmp;
              ll := cadr tmp;
              rr := caddr tmp;
              quo1 := get_quo_int(getmat(A,k,k),g);
              quo2 := get_quo_int(getmat(A,i,k),g);

              %
              %  We have  ll A(k,k)/g + rr A(i,k)/g = 1
              %
              %       [  ll     rr   ]  [ A[k,k]  A[k,j] ]   [ g  ... ]
              %       [              ]  [                ] = [        ]
              %       [ -quo2  quo1  ]  [ A[i,k]  A[i,j] ]   [ 0  ... ]
              %
              %       for j = k+1..m  where note  ll quo1 + rr quo2 = 1
              %

              for j:=k+1:m do
              << 
                tmp := ll*getmat(A,k,j)+rr*getmat(A,i,j);
                setmat(A,i,j,quo1*getmat(A,i,j)-quo2*getmat(A,k,j));
                setmat(A,k,j,tmp);
              >>;
    
              for j:=1:n do 
              <<
                tmp := quo1*getmat(Left,j,k)+quo2*getmat(Left,j,i);
                setmat(Left,j,i,-rr*getmat(Left,j,k)+ll*
                       getmat(Left,j,i));
                setmat(Left,j,k,tmp);
              >>;
             
              setmat(A,k,k,g);
              setmat(A,i,k,0);
            >>; 
          >>; 
    
          isclear := t;
          % 
          %  0 out row k from k+1 to m.
          %
          for i:=k+1:m do
          << 
            q := get_quo_int(getmat(A,k,i),getmat(A,k,k));
            setmat(A,k,i,get_rem_int(getmat(A,k,i),getmat(A,k,k)));
          
            for j:=1:m do
            <<
              setmat(Right,k,j,getmat(Right,k,j)+q*getmat(Right,i,j));
            >>;
    
          >>; 
    
          for i:=k+1:m do
          <<
            if getmat(A,k,i) = 0 then <<>>
            else
            <<
              tmp := calc_exgcd_int( getmat(A,k,k),getmat(A,k,i));
              g := car tmp;
              ll := cadr tmp;
              rr := caddr tmp;
              quo1 := get_quo_int(getmat(A,k,k),g);
              quo2 := get_quo_int(getmat(A,k,i),g);
    
              for j:=k+1:n do
              <<
                tmp := ll*getmat(A,j,k) + rr*getmat(A,j,i);
                setmat(A,j,i,quo1*getmat(A,j,i)-quo2*getmat(A,j,k));
                setmat(A,j,k,tmp);
              >>;
    
              for j:=1:m do
              <<
                tmp := quo1*getmat(Right,k,j)+quo2*getmat(Right,i,j);
                setmat(Right,i,j,-rr*getmat(Right,k,j)+ll*
                       getmat(Right,i,j));
                setmat(Right,k,j,tmp);
              >>;
    
              setmat(A,k,k,g);
              setmat(A,k,i,0);
    
              isclear := nil;
            >>;
          >>;
  
        >>; 
      >>; 
    >>;
   
    r := 0;
    %
    %  At this point, A is diagonal: some A(i,i) may be zero.
    %  Move non-zero's up also making all entries unit normal.
    %
    for i:=1:min(n,m) do
    <<
      if getmat(A,i,i) neq 0 then 
      <<
        r := r+1;
        sgn := algebraic (sign(getmat(A,i,i)));
        setmat(A,r,r,sgn*getmat(A,i,i));
        if i = r then
        <<
    
          for j:=1:m do
          <<
            setmat(Right,i,j,getmat(Right,i,j)*sgn);
          >>;
    
        >>
        else
        <<
          setmat(A,i,i,0);
    
          for j:=1:n do
          <<
            tmp := getmat(Left,j,r);
            setmat(Left,j,r,getmat(Left,j,i));
            setmat(Left,j,i,tmp);
          >>;
    
          for j:=1:m do
          <<
            tmp := getmat(Right,i,j)*sgn;
            setmat(Right,i,j,getmat(Right,r,j)*sgn);
            setmat(Right,r,j,tmp);
          >>;
   
        >>;
      >>;
    >>;
    %
    %  Now make A(i,i) | A(i+1,i+1) for 1 <= i < r.
    %
    for i:=1:r-1 do
    <<
      j:=i+1; 
      <<
        while getmat(A,i,i) neq 1 and j <= r do
        <<
          int1 := getmat(A,i,i);
          int2 := getmat(A,j,j);
          g := car (calc_exgcd_int(int1,int2));
          ll := cadr (calc_exgcd_int(int1,int2));
          rr := caddr (calc_exgcd_int(int1,int2));
          quo1 := get_quo_int(getmat(A,i,i),g);
          quo2 := get_quo_int(getmat(A,j,j),g);
  
          setmat(A,i,i,g);
          setmat(A,j,j,quo1*getmat(A,j,j));
      
          for k:=1:n do
          <<
            tmp := quo1*getmat(Left,k,i)+quo2*getmat(Left,k,j);
            setmat(Left,k,j,-rr*getmat(Left,k,i)+ll*
                   getmat(Left,k,j));
            setmat(Left,k,i,tmp);
          >>;
   
          for k:=1:m do
          <<
            rrquo := rr*quo2;
            tmp := (1-rrquo)*getmat(Right,i,k)+rrquo*
                   getmat(Right,j,k);
            setmat(Right,j,k,-getmat(Right,i,k)+getmat(Right,j,k));
            setmat(Right,i,k,tmp);
          >>;
 
          j := j+1;
        >>;
      >>;
    >>;    
     
    return {'list,A,Left,Right};
  end;
    
flag ('(smithex_int),'opfn);  %  So it can be used from algebraic mode.



symbolic procedure calc_exgcd_int(int1,int2);
  begin
    integer gcd,c,c1,c2,d,d1,d2,q,r,r1,r2,s1,t1;

    if int1 = 0 and int2 = 0  then return {0,0,0}
    else
    <<

      c := reval int1;
      d := reval int2;

      c1 := 1;
      d1 := 0;
      c2 := 0;
      d2 := 1;

      while d neq 0 do
      <<
        q  := get_quo_int(c,d);
        r  := c - q*d;
        r1 := c1 - q*d1;
        r2 := c2 - q*d2;
        c  := d;
        c1 := d1;
        c2 := d2;
        d  := r;
        d1 := r1;
        d2 := r2;
      >>;
   
      gcd := abs(c);
      s1  := c1; 
      t1  := c2; 
   
      if c < 0 then
      <<
        s1 := -s1;
        t1 := -t1;
      >>;

      return {gcd,s1,t1};
    >>;
  end;


symbolic procedure get_quo_int(int1,int2);
  begin
    integer quo1,input1,input2;

    input1 := reval int1;
    input2 := reval int2;

    if input1 = 0 and input2 = 0 then return 0 
    else
    <<
      if input1 < 0 and input2 < 0 then
      <<
        (input1 := abs(input1));
        (input2 := abs(input2));
      >>;

      if (input1/input2) < 0 then
      <<
        quo1 :=ceiling(input1/input2);
      >>
      else
      <<
        quo1 :=floor(input1/input2);
      >>;

      return quo1;
    >>;
  end;


symbolic procedure get_rem_int(int1,int2);
  begin
    integer rem1,input1,input2;
    input1 := reval int1;
    input2 := reval int2;
    rem1 := input1 - get_quo_int(input1,input2)*input2;
    return rem1;
  end;


symbolic procedure integer_entries_test(B);
  begin
    for i:=1:car size_of_matrix(B) do
    <<
      for j:=1:cadr size_of_matrix(B) do
      <<
        if not numberp getmat(B,i,j) then rederr 
         "ERROR: matrix contains non_integer entries. Try smithex. "
      >>;
    >>;
  end;

endmodule;  

end;



REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]