module a2dip;
% Convert an algebraic (prefix) form to distributive polynomial
% Authors: R. Gebauer, A. C. Hearn, H. Kredel
% Modified by: H. Melenk.
symbolic procedure a2dip u;
% Converts the algebraic (prefix) form u to a distributive poly.
% We assume that all variables used have been previously
% defined in dipvars!*, but a check is also made for this
if atom u then a2dipatom u
else if not atom car u or not idp car u
then typerr(car u,"dipoly operator")
% Handling expt separately because the exponents should
% not be simplified as domain elements.
else if car u='expt then dipfnpow(a2dip cadr u,caddr u)
else (if x then apply(x,list for each y in cdr u collect a2dip y)
else a2dipatom u)
where x=get(car u,'dipfn);
symbolic procedure a2dipatom u;
% Converts the atom (or kernel) u into a distributive polynomial
if u=0 then dipzero
else if numberp u or not(u member dipvars!*)
then dipfmon(a2bc u,evzero())
else dipfmon(a2bc 1,mkexpvec u);
symbolic procedure dipfnsum u;
% U is a list of dip expressions. Result is the distributive poly
% representation for the sum
(<<for each y in cdr u do x:=dipsum(x,y);x>>)where x=car u;
put('plus,'dipfn,'dipfnsum);
symbolic procedure dipfnprod u;
% U is a list of dip expressions. Result is the distributive poly
% representation for the product
% Maybe we should check for a zero
(<<for each y in cdr u do x:=dipprod(x,y);x>>)where x=car u;
put('times,'dipfn,'dipfnprod);
symbolic procedure dipfndif u;
% U is a list of two dip expressions. Result is the distributive
% polynomial representation for the difference
dipsum(car u,dipneg cadr u);
put('difference,'dipfn,'dipfndif);
symbolic procedure dipfnpow(v,n);
% V is a dip. Result is the distributive poly v**n.
(if not fixp n or n<0
then typerr(n,"distributive polynomial exponent")
else if n=0 then if dipzero!? v then rerror(dipoly,1,"0**0 invalid")
else w
else if dipzero!? v or n=1 then v
else if dipzero!? dipmred v
then dipfmon(bcpow(diplbc v,n),intevprod(n,dipevlmon v))
else <<while n>0 do
<<if not evenp n then w:=dipprod(w,v);
n:=n/2;
if n>0 then v:=dipprod(v,v)>>;
w>>)
where w:=dipfmon(a2bc 1,evzero());
% put('expt,'dipfn,'dipfnpow);
symbolic procedure dipfnneg u;
% U is a list of one dip expression. Result is the distributive
% polynomial representation for the negative
(if dipzero!? v then v
else dipmoncomp(bcneg diplbc v,dipevlmon v,dipmred v))
where v=car u;
put('minus,'dipfn,'dipfnneg);
symbolic procedure dipfnquot u;
% U is a list of two dip expressions. Result is the distributive
% polynomial representation for the quotient
if dipzero!? cadr u or not dipzero!? dipmred cadr u
or not evzero!? dipevlmon cadr u
or (!*vdpinteger and not bcone!? diplbc cadr u)
then typerr(dip2a cadr u,"distributive polynomial denominator")
else dipfnquot1(car u,diplbc cadr u);
symbolic procedure dipfnquot1(u,v);
if dipzero!? u then u
else dipmoncomp(bcquot(diplbc u,v),
dipevlmon u,
dipfnquot1(dipmred u,v));
put('quotient,'dipfn,'dipfnquot);
endmodule;;end ;