File r37/log/dfpart.rlg artifact 062a4a1f63 part of check-in ab67b20f90


Sun Aug 18 16:52:18 2002 run on Windows
depend y,x;


generic_function f(x,y);


df(f(),x);


df(y,x)*f (x,y) + f (x,y)
         y         x

df(f(x,y),x);


df(y,x)*f (x,y) + f (x,y)
         y         x

df(f(x,x**3),x);


      3            3   2
f (x,x ) + 3*f (x,x )*x
 x            y

df(f(x,z**3),x);


      3
f (x,z )
 x

df(a*f(x,y),x);


a*(df(y,x)*f (x,y) + f (x,y))
            y         x

dfp(a*f(x,y),x);


f (x,y)*a
 x

df(f(x,y),x,2);


                           2
df(y,x,2)*f (x,y) + df(y,x) *f  (x,y) + df(y,x)*f  (x,y) + df(y,x)*f  (x,y)
           y                  yy                 xy                 yx

 + f  (x,y)
    xx

df(dfp(f(x,y),x),x);


df(y,x)*f  (x,y) + f  (x,y)
         xy         xx

df(dfp(f(x,x**3),x),x);


       3             3   2
f  (x,x ) + 3*f  (x,x )*x
 xx            xy


% using a generic fucntion with commutative derivatives
generic_function u(x,y);


dfp_commute u(x,y);


df(u(x,y),x,x);


                           2
df(y,x,2)*u (x,y) + df(y,x) *u  (x,y) + 2*df(y,x)*u  (x,y) + u  (x,y)
           y                  yy                   xy         xx


% explicitly declare 1st and second derivative commutative
generic_function v(x,y);


let dfp(v(~a,~b),{y,x}) => dfp(v(a,b),{x,y});


df(v(),x,2);


                           2
df(y,x,2)*v (x,y) + df(y,x) *v  (x,y) + 2*df(y,x)*v  (x,y) + v  (x,y)
           y                  yy                   xy         xx


% substitute expressions for the arguments
w:=df(f(),x,2);


                                2
w := df(y,x,2)*f (x,y) + df(y,x) *f  (x,y) + df(y,x)*f  (x,y) + df(y,x)*f  (x,y)
                y                  yy                 xy                 yx

      + f  (x,y)
         xx

sub(x=0,y=x,w);


f  (0,x) + f  (0,x) + f  (0,x) + f  (0,x)
 xx         xy         yx         yy


% composite generic functions
generic_function g(x,y);


generic_function h(y,z);


depend z,x;


w:=df(g()*h(),x);


w := 

df(y,x)*g (x,y)*h() + df(y,x)*h (y,z)*g() + df(z,x)*h (y,z)*g() + g (x,y)*h()
         y                     y                     z             x

sub(y=0,w);


df(z,x)*h (0,z)*g(x,0) + g (x,0)*h(0,z)
         z                x

% substituting g*h for f in a partial derivative of f,
% inheriting the arguments of f. Here no derivative of h
% appears because h does not depend of x.
sub(f=g*h,dfp(f(a,b),x));


g (a,b)*h(b,z)
 x


% indexes.

% in the following total differential the partial
% derivatives wrt i and j do not appear because i and
% j do not depend of x.

generic_function m(i,j,x,y);


df(m(i,j,x,y),x);


df(y,x)*m (i,j,x,y) + m (i,j,x,y)
         y             x


% computation with a differential equation.

generic_function f(x,y);


operator y;


let df(y(~x),x) => f(x,y(x));



% some derivatives

df(y(x),x);


f(x,y(x))

df(y(x),x,2);


f (x,y(x)) + f (x,y(x))*f(x,y(x))
 x            y

df(y(x),x,3);


f  (x,y(x)) + f  (x,y(x))*f(x,y(x)) + f (x,y(x))*f (x,y(x))
 xx            xy                      x          y

                                                2             2
 + f  (x,y(x))*f(x,y(x)) + f  (x,y(x))*f(x,y(x))  + f (x,y(x)) *f(x,y(x))
    yx                      yy                       y

sub(x=22,ws);


f  (22,y(22)) + f  (22,y(22))*f(22,y(22)) + f (22,y(22))*f (22,y(22))
 xx              xy                          x            y

                                                        2
 + f  (22,y(22))*f(22,y(22)) + f  (22,y(22))*f(22,y(22))
    yx                          yy

               2
 + f (22,y(22)) *f(22,y(22))
    y


% taylor expansion for y

load_package taylor;


taylor(y(x0+h),h,0,3);


                         f (x0,y(x0)) + f (x0,y(x0))*f(x0,y(x0))
                          x              y                         2
y(x0) + f(x0,y(x0))*h + -----------------------------------------*h  + (
                                            2

   f  (x0,y(x0)) + f  (x0,y(x0))*f(x0,y(x0)) + f (x0,y(x0))*f (x0,y(x0))
    xx              xy                          x            y

                                                           2
    + f  (x0,y(x0))*f(x0,y(x0)) + f  (x0,y(x0))*f(x0,y(x0))
       yx                          yy

                  2                 3      4
    + f (x0,y(x0)) *f(x0,y(x0)))/6*h  + O(h )
       y


clear w;



%------------------------ Runge Kutta -------------------------
% computing Runge Kutta formulas for ODE systems Y'=F(x,y(x));
% forms corresponding to Ralston Rabinowitz

load_package taylor;


operator alpha,beta,w,k;



% s= order of Runge Kutta formula

s:=3;


s := 3
  

generic_function f(x,y);


operator y;


*** y already defined as operator 


% introduce ODE

let df(y(~x),x)=>f(x,y(x));

 

% formal series for solution

y1_form := taylor(y(x0+h),h,0,s);


                                    f (x0,y(x0)) + f (x0,y(x0))*f(x0,y(x0))
                                     x              y                         2
y1_form := y(x0) + f(x0,y(x0))*h + -----------------------------------------*h  
                                                       2

           + (f  (x0,y(x0)) + f  (x0,y(x0))*f(x0,y(x0))
               xx              xy

               + f (x0,y(x0))*f (x0,y(x0)) + f  (x0,y(x0))*f(x0,y(x0))
                  x            y              yx

                                          2               2                 3
               + f  (x0,y(x0))*f(x0,y(x0))  + f (x0,y(x0)) *f(x0,y(x0)))/6*h
                  yy                           y

                 4
            + O(h )


% Runge-Kutta Ansatz:

let alpha(1)=>0;



for i:=1:s do
   let k(i) => h*f(x0 + alpha(i)*h, 
                  y(x0) + for j:=1:(i-1) sum beta(i,j)*k(j));


y1_ansatz:= y(x0) + for i:=1:s sum w(i)*k(i);


y1_ansatz := f(alpha(3)*h + x0,

               beta(3,2)*f(alpha(2)*h + x0,beta(2,1)*f(x0,y(x0))*h + y(x0))*h

                + beta(3,1)*f(x0,y(x0))*h + y(x0))*w(3)*h

              + f(alpha(2)*h + x0,beta(2,1)*f(x0,y(x0))*h + y(x0))*w(2)*h

              + f(x0,y(x0))*w(1)*h + y(x0)


y1_ansatz := taylor(y1_ansatz,h,0,s);


y1_ansatz := y(x0) + f(x0,y(x0))*(w(3) + w(2) + w(1))*h + (

                alpha(3)*f (x0,y(x0))*w(3) + alpha(2)*f (x0,y(x0))*w(2)
                          x                            x

                 + beta(3,2)*f (x0,y(x0))*f(x0,y(x0))*w(3)
                              y

                 + beta(3,1)*f (x0,y(x0))*f(x0,y(x0))*w(3)
                              y

                                                             2
                 + beta(2,1)*f (x0,y(x0))*f(x0,y(x0))*w(2))*h  + (
                              y

                        2
                alpha(3) *f  (x0,y(x0))*w(3)
                           xx

                 + alpha(3)*beta(3,2)*f  (x0,y(x0))*f(x0,y(x0))*w(3)
                                       xy

                 + alpha(3)*beta(3,2)*f  (x0,y(x0))*f(x0,y(x0))*w(3)
                                       yx

                 + alpha(3)*beta(3,1)*f  (x0,y(x0))*f(x0,y(x0))*w(3)
                                       xy

                 + alpha(3)*beta(3,1)*f  (x0,y(x0))*f(x0,y(x0))*w(3)
                                       yx

                           2
                 + alpha(2) *f  (x0,y(x0))*w(2)
                              xx

                 + 2*alpha(2)*beta(3,2)*f (x0,y(x0))*f (x0,y(x0))*w(3)
                                         x            y

                 + alpha(2)*beta(2,1)*f  (x0,y(x0))*f(x0,y(x0))*w(2)
                                       xy

                 + alpha(2)*beta(2,1)*f  (x0,y(x0))*f(x0,y(x0))*w(2)
                                       yx

                            2                          2
                 + beta(3,2) *f  (x0,y(x0))*f(x0,y(x0)) *w(3)
                               yy

                                                                  2
                 + 2*beta(3,2)*beta(3,1)*f  (x0,y(x0))*f(x0,y(x0)) *w(3)
                                          yy

                                                     2
                 + 2*beta(3,2)*beta(2,1)*f (x0,y(x0)) *f(x0,y(x0))*w(3)
                                          y

                            2                          2
                 + beta(3,1) *f  (x0,y(x0))*f(x0,y(x0)) *w(3)
                               yy

                            2                          2          3      4
                 + beta(2,1) *f  (x0,y(x0))*f(x0,y(x0)) *w(2))/2*h  + O(h )
                               yy


% compute y1_form - y1_ans and collect coeffients of powers of h

y1_diff := num(taylortostandard(y1_ansatz)-taylortostandard(y1_form))$


cl := coeff(y1_diff,h);


cl := {0,

       6*f(x0,y(x0))*(w(3) + w(2) + w(1) - 1),

       3*(2*alpha(3)*f (x0,y(x0))*w(3) + 2*alpha(2)*f (x0,y(x0))*w(2)
                      x                              x

           + 2*beta(3,2)*f (x0,y(x0))*f(x0,y(x0))*w(3)
                          y

           + 2*beta(3,1)*f (x0,y(x0))*f(x0,y(x0))*w(3)
                          y

           + 2*beta(2,1)*f (x0,y(x0))*f(x0,y(x0))*w(2) - f (x0,y(x0))
                          y                               x

           - f (x0,y(x0))*f(x0,y(x0))),
              y

                 2
       3*alpha(3) *f  (x0,y(x0))*w(3)
                    xx

        + 3*alpha(3)*beta(3,2)*f  (x0,y(x0))*f(x0,y(x0))*w(3)
                                xy

        + 3*alpha(3)*beta(3,2)*f  (x0,y(x0))*f(x0,y(x0))*w(3)
                                yx

        + 3*alpha(3)*beta(3,1)*f  (x0,y(x0))*f(x0,y(x0))*w(3)
                                xy

        + 3*alpha(3)*beta(3,1)*f  (x0,y(x0))*f(x0,y(x0))*w(3)
                                yx

                    2
        + 3*alpha(2) *f  (x0,y(x0))*w(2)
                       xx

        + 6*alpha(2)*beta(3,2)*f (x0,y(x0))*f (x0,y(x0))*w(3)
                                x            y

        + 3*alpha(2)*beta(2,1)*f  (x0,y(x0))*f(x0,y(x0))*w(2)
                                xy

        + 3*alpha(2)*beta(2,1)*f  (x0,y(x0))*f(x0,y(x0))*w(2)
                                yx

                     2                          2
        + 3*beta(3,2) *f  (x0,y(x0))*f(x0,y(x0)) *w(3)
                        yy

                                                         2
        + 6*beta(3,2)*beta(3,1)*f  (x0,y(x0))*f(x0,y(x0)) *w(3)
                                 yy

                                            2
        + 6*beta(3,2)*beta(2,1)*f (x0,y(x0)) *f(x0,y(x0))*w(3)
                                 y

                     2                          2
        + 3*beta(3,1) *f  (x0,y(x0))*f(x0,y(x0)) *w(3)
                        yy

                     2                          2
        + 3*beta(2,1) *f  (x0,y(x0))*f(x0,y(x0)) *w(2) - f  (x0,y(x0))
                        yy                                xx

        - f  (x0,y(x0))*f(x0,y(x0)) - f (x0,y(x0))*f (x0,y(x0))
           xy                          x            y

                                                               2
        - f  (x0,y(x0))*f(x0,y(x0)) - f  (x0,y(x0))*f(x0,y(x0))
           yx                          yy

                      2
        - f (x0,y(x0)) *f(x0,y(x0))}
           y


% f_forms: forms of f and its derivatives which occur in cl

f_forms :=q := {f(x0,y(x0))}$


for i:=1:(s-1) do
  <<q:= for each r in q join {dfp(r,x),dfp(r,y)};
    f_forms := append(f_forms,q);
  >>;


f_forms;


{f(x0,y(x0)),

 f (x0,y(x0)),
  x

 f (x0,y(x0)),
  y

 f  (x0,y(x0)),
  xx

 f  (x0,y(x0)),
  xy

 f  (x0,y(x0)),
  yx

 f  (x0,y(x0))}
  yy


% extract coefficients of the f_forms in cl

sys := cl$


for each fr in f_forms do
  sys:=for each c in sys join coeff(c,fr);


% and eliminate zeros
sys := for each c in sys join if c neq 0 then {c} else {};


sys := {6*(w(3) + w(2) + w(1) - 1),

        3*(2*alpha(3)*w(3) + 2*alpha(2)*w(2) - 1),

        3*(2*beta(3,2)*w(3) + 2*beta(3,1)*w(3) + 2*beta(2,1)*w(2) - 1),

                  2                  2
        3*alpha(3) *w(3) + 3*alpha(2) *w(2) - 1,

        6*alpha(2)*beta(3,2)*w(3) - 1,

        3*alpha(3)*beta(3,2)*w(3) + 3*alpha(3)*beta(3,1)*w(3)

         + 3*alpha(2)*beta(2,1)*w(2) - 1,

        3*alpha(3)*beta(3,2)*w(3) + 3*alpha(3)*beta(3,1)*w(3)

         + 3*alpha(2)*beta(2,1)*w(2) - 1,

        6*beta(3,2)*beta(2,1)*w(3) - 1,

                   2                                                2
        3*beta(3,2) *w(3) + 6*beta(3,2)*beta(3,1)*w(3) + 3*beta(3,1) *w(3)

                      2
         + 3*beta(2,1) *w(2) - 1}


end;


Time for test: 3715 ms, plus GC time: 121 ms


REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]