Sun Aug 18 16:14:22 2002 run on Windows
% Test of CANTENS.RED
%
% Authors: H. Caprasse <hubert.caprasse@ulg.ac.be>
%
% Version and Date: Version 1.1, 15 September 1998.
%----------------------------------------------------------------
off errcont;
% Default :
onespace ?;
yes
wholespace_dim ?;
dim
global_sign ? ;
1
signature ?;
0
% answers to the 4 previous commands: yes, dim, 1, 0
wholespace_dim 4;
4
signature 1;
1
global_sign(-1);
-1
% answers to the three previous commands: 4, 1, (-1)
% answer to the command below: {}
show_spaces();
{}
% Several spaces:
off onespace;
onespace ?;
no
% answer: no
show_spaces();
{}
define_spaces wholespace={6,signature=1,indexrange=0 .. 5};
t
% indexrange command is superfluous since 'wholespace':
show_spaces();
{{wholespace,6,signature=1,indexrange=0 .. 5}}
rem_spaces wholespace;
t
define_spaces wholespace={11,signature=1};
t
define_spaces mink={4,signature=1,indexrange=0 .. 3};
t
define_spaces eucl={6,euclidian,indexrange=4 .. 9};
t
show_spaces();
{{wholespace,11,signature=1},
{mink,4,signature=1,indexrange=0 .. 3},
{eucl,6,euclidian,indexrange=4 .. 9}}
%
% if input error or modifications necessary:
%
define_spaces eucl={7,euclidian,indexrange=4 .. 10};
*** Warning: eucl cannot be (or is already) defined as space identifier
t
%
% do:
%
rem_spaces eucl;
t
define_spaces eucl={7,euclidian,indexrange=4 .. 10};
t
show_spaces();
{{wholespace,11,signature=1},
{mink,4,signature=1,indexrange=0 .. 3},
{eucl,7,euclidian,indexrange=4 .. 10}}
% done
%
define_spaces eucl1={1,euclidian,indexrange=11 .. 11};
t
show_spaces();
{{wholespace,11,signature=1},
{mink,4,signature=1,indexrange=0 .. 3},
{eucl,7,euclidian,indexrange=4 .. 10},
{eucl1,1,euclidian,indexrange=11 .. 11}}
rem_spaces wholespace,mink,eucl,eucl1;
t
show_spaces();
{}
%
% Indices can be made to belong to a subspace or replaced
% in the whole space:
define_spaces eucl={3,euclidean};
t
show_spaces();
{{eucl,3,euclidean}}
mk_ids_belong_space({a1,a2},eucl);
t
% a1,a2 belong to the subspace eucl.
mk_ids_belong_anyspace a1,a2;
t
% replaced in the whole space.
rem_spaces eucl;
t
%%
%% GENERIC TENSORS:
on onespace;
wholespace_dim dim;
dim
tensor te;
t
te(3,a,-4,b,-c,7);
3 a b 7
te
4 c
te(3,a,{x,y},-4,b,-c,7);
3 a b 7
te (x,y)
4 c
te(3,a,-4,b,{u,v},-c,7);
3 a b 7
te (u,v)
4 c
te({x,y});
te(x,y)
make_variables x,y;
t
te(x,y);
te(x,y)
te(x,y,a);
a
te (x,y)
remove_variables x;
t
te(x,y,a);
x a
te (y)
remove_variables y;
t
%
% implicit dependence:
%
operator op2;
depend op1,op2(x);
df(op1,op2(x));
df(op1,op2(x))
% the next response is 0:
df(op1,op2(y));
0
clear op2;
% case of a tensor:
operator op1;
depend te,op1(x);
df(te(a,-b),op1(x));
a
df(te ,op1(x))
b
% next the outcome is 0:
df(te(a,-b),op1(y));
0
%
tensor x;
t
depend te,x;
% outcome is NOT 0:
df(te(a,-b),x(c));
a c
df(te ,x )
b
%
% Substitutions:
sub(a=-c,te(a,b));
b
te
c
sub(a=-1,te(a,b));
b
te
1
% the following operation is wrong:
sub(a=-0,te(a,b));
0 b
te
% should be made as following to be correct:
sub(a=-!0,te(a,b));
b
te
0
% dummy indices recognition
dummy_indices();
{}
te(a,b,-c,-a);
a b
te
c a
dummy_indices();
{a}
te(a,b,-c,-a);
a b
te
c a
dummy_indices();
{a}
% hereunder an error message correctly occurs:
on errcont;
te(a,b,-c,a);
***** ((c) (a b a)) are inconsistent lists of indices
off errcont;
sub(c=b,te(a,b,-c,-a));
a b
te
b a
dummy_indices();
{b,a}
% dummy indices suppression:
on errcont;
te(d,-d,d);
***** ((d) (d d)) are inconsistent lists of indices
off errcont;
dummy_indices();
{d,b,a}
rem_dummy_indices d;
t
te(d,d);
d d
te
dummy_indices();
{b,a}
rem_dummy_indices a,b;
t
onespace ?;
yes
% case of space of integer dimension:
wholespace_dim 4;
4
signature 0;
0
% 7 out of range
on errcont;
te(3,a,-b,7);
***** numeric indices out of range
off errcont;
te(3,a,-b,3);
3 a 3
te
b
te(4,a,-b,4);
4 a 4
te
b
% an 'out-of-range' error is issued:
on errcont;
sub(a=5,te(3,a,-b,3));
***** numeric indices out of range
off errcont;
signature 1;
1
% now indices should run from 0 to 3 => error:
on errcont;
te(4,a,-b,4);
***** numeric indices out of range
off errcont;
% correct:
te(0,a,-b,3);
0 a 3
te
b
%
off onespace;
define_spaces wholespace={4,euclidean};
t
% We MUST say that te BELONG TO A SPACE, here to wholespace:
make_tensor_belong_space(te,wholespace);
wholespace
on errcont;
te(a,5,-b);
***** numeric indices out of range
off errcont;
te(a,4,-b);
a 4
te
b
rem_spaces wholespace;
t
define_spaces wholespace={5,signature=1};
t
define_spaces eucl={1,signature=0};
t
show_spaces();
{{wholespace,5,signature=1},
{eucl,1,signature=0}}
make_tensor_belong_space(te,eucl);
eucl
te(1);
1
te
% hereunder, an error message is issued:
on errcont;
te(2);
***** numeric indices out of range
off errcont;
% hereunder, an error message should be issued, it is not
% because no indexrange has been declared:
te(0);
0
te
rem_spaces eucl;
t
define_spaces eucl={1,signature=0,indexrange=1 .. 1};
t
% NOW an error message is issued:
on errcont;
te(0);
***** numeric indices do not belong to (sub)-space
off errcont;
te(1);
1
te
% again an error message:
on errcont;
te(2);
***** numeric indices do not belong to (sub)-space
off errcont;
%
rem_dummy_indices a,b,c,d;
t
% symmetry properties:
%
symmetric te;
te(a,-b,c,d);
a c d
te
b
remsym te;
antisymmetric te;
te(a,b,-c,d);
a b d
- te
c
remsym te;
% mixed symmetries:
tensor r;
t
%
symtree(r,{!+,{!-,1,2},{!-,3,4}});
ra:=r(b,a,c,d)$
canonical ra;
a b c d
- r
ra:=r(c,d,a,b)$
canonical ra;
a b c d
r
% here canonical is short-cutted
ra:=r(b,b,c,a);
ra := 0
%
% symmetrization:
on onespace;
symmetrize(r(a,b,c,d),r,permutations,perm_sign);
a b c d a b d c a c b d a c d b a d b c a d c b b a c d
r - r - r + r + r - r - r
b a d c b c a d b c d a b d a c b d c a c a b d c a d b
+ r + r - r - r + r + r - r
c b a d c b d a c d a b c d b a d a b c d a c b d b a c
- r + r + r - r - r + r + r
d b c a d c a b d c b a
- r - r + r
canonical ws;
a b c d a c b d a d b c
8*(r - r + r )
off onespace;
symmetrize({a,b,c,d},r,cyclicpermlist);
a b c d b c d a c d a b d a b c
r + r + r + r
canonical ws;
a b c d a d b c
2*(r - r )
rem_tensor r;
t
% Declared bloc-diagonal tensor:
rem_spaces wholespace,eucl;
t
define_spaces wholespace={7,signature=1};
t
define_spaces mink={4,signature=1,indexrange=0 .. 3};
t
define_spaces eucl={3,euclidian,indexrange=4 .. 6};
t
show_spaces();
{{wholespace,7,signature=1},
{mink,4,signature=1,indexrange=0 .. 3},
{eucl,3,euclidian,indexrange=4 .. 6}}
make_tensor_belong_space(te,eucl);
eucl
make_bloc_diagonal te;
t
mk_ids_belong_space({a,b,c},eucl);
t
te(a,b,z);
a b z
te
mk_ids_belong_space({m1,m2},mink);
t
te(a,b,m1);
0
te(a,b,m2);
0
mk_ids_belong_anyspace a,b,c,m1,m2;
t
te(a,b,m2);
a b m2
te
% how to ASSIGN a particular component ?
% take the simplest context:
rem_spaces wholespace,mink,eucl;
t
on onespace;
te({x,y},a,-0)==x*y*te(a,-0);
a
te *x*y
0
te({x,y},a,-0);
a
te *x*y
0
te({x,y},a,0);
a 0
te (x,y)
% hereunder an error message is issued because already assigned:
on errcont;
te({x,y},a,-0)==x*y*te(a,-0);
a
***** te *x*y invalid as setvalue kernel
0
off errcont;
% clear value:
rem_value_tens te({x,y},a,-0);
t
te({x,y},a,-0);
a
te (x,y)
0
te({x,y},a,-0)==(x+y)*te(a,-0);
a
te *(x + y)
0
% A small illustration
te(1)==sin th * cos phi;
cos(phi)*sin(th)
te(-1)==sin th * cos phi;
cos(phi)*sin(th)
te(2)==sin th * sin phi;
sin(phi)*sin(th)
te(-2)==sin th * sin phi;
sin(phi)*sin(th)
te(3)==cos th ;
cos(th)
te(-3)==cos th ;
cos(th)
for i:=1:3 sum te(i)*te(-i);
2 2 2 2 2
cos(phi) *sin(th) + cos(th) + sin(phi) *sin(th)
rem_value_tens te;
t
te(2);
2
te
let te({x,y},-0)=x*y;
te({x,y},-0);
x*y
te({x,y},0);
0
te (x,y)
te({x,u},-0);
te (x,u)
0
for all x,a let te({x},a,-b)=x*te(a,-b);
te({u},1,-b);
1
te *u
b
te({u},c,-b);
c
te *u
b
te({u},b,-b);
b
te *u
b
te({u},a,-a);
a
te (u)
a
for all x,a clear te({x},a,-b);
te({u},c,-b);
c
te (u)
b
% rule for indices only
for all a,b let te({x},a,-b)=x*te(a,-b);
te({x},c,-b);
c
te *x
b
te({x},a,-a);
a
te *x
a
% A BUG still exists for -0 i.e. rule does NOT apply:
te({x},a,-0);
a
te (x)
0
% the cure is to use -!0 in this case
te({x},0,-!0);
0
te *x
0
%
% local rules:
%
rul:={te(~a) => sin a};
~a
rul := {te => sin(a)}
te(1) where rul;
sin(1)
%
rul1:={te(~a,{~x,~y}) => x*y*sin(a)};
~a
rul1 := {te (~x,~y) => x*y*sin(a)}
%
te(a,{x,y}) where rul1;
sin(a)*x*y
te({x,y},a) where rul1;
sin(a)*x*y
%
rul2:={te(-~a,{~x,~y}) => x*y*sin(-a)};
rul2 := {te (~x,~y) => x*y*sin( - a)}
~a
%
te(-a,{x,y}) where rul2;
- sin(a)*x*y
te({x,y},-a) where rul2;
- sin(a)*x*y
%% CANONICAL
%
% 1. Coherence of tensorial indices.
%
tensor te,tf;
*** Warning: te redefined as generic tensor
t
dummy_indices();
{a,b}
make_tensor_belong_anyspace te;
t
on errcont;
bb:=te(a,b)*te(-b)*te(b);
a b b
bb := te *te *te
b
% hereunder an error message is issued:
canonical bb;
***** ((b) (a b b)) are inconsistent lists of indices
off errcont;
bb:=te(a,b)*te(-b);
a b
bb := te *te
b
% notice how it is rewritten by canonical:
canonical bb;
a b
te *te
b
%
dummy_indices();
{a,b}
aa:=te(d,-c)*tf(d,-c);
d d
aa := te *tf
c c
% if a and c are FREE no error message:
canonical aa;
d d
te *tf
c c
% do NOT introduce powers for NON-INVARIANT tensors:
aa:=te(d,-c)*te(d,-c);
d 2
aa := (te )
c
% Powers are taken away
canonical aa;
d
te
c
% A trace CANNOT be squared because powers are removed by 'canonical':
cc:=te(a,-a)^2$
canonical cc;
a
te
a
%
% Correct writing of the previous squared:
cc:=te(a,-a)*te(b,-b)$
canonical cc;
a b
te *te
a b
% all terms must have the same variance:
on errcont;
aa:=te(a,c)+x^2;
a c 2
aa := te + x
canonical aa;
***** scalar added with tensor(s)
aa:=te(a,b)+tf(a,c);
a b a c
aa := te + tf
canonical aa;
***** mismatch in free indices : ((a c) (a b))
off errcont;
dummy_indices();
{a,b}
rem_dummy_indices a,b,c;
t
dummy_indices();
{}
% a dummy VARIABLE is NOT a dummy INDEX
dummy_names b;
t
dummy_indices();
{}
% so, no error message in the following:
canonical(te(b,c)*tf(b,c));
b c b c
te *tf
% it is an incorrect input for a variable.
% correct input is:
canonical(te({b},c)*tf({b},c));
c c
te (b)*tf (b)
clear_dummy_names;
t
% contravariant indices are placed before covariant ones if possible.
% i.e. Riemanian spaces by default:
pp:=te(a,-a)+te(-a,a)+1;
a a
pp := te + te + 1
a a
canonical pp;
a
2*te + 1
a
pp:=te(a,-c)+te(-b,b,a,-c);
b a a
pp := te + te
b c c
canonical pp;
a b a
te + te
c b c
pp:=te(r,a,-f,d,-a,f)+te(r,-b,-c,d,b,c);
r d b c r a d f
pp := te + te
b c f a
canonical pp;
r a b d
2*te
a b
% here, a case where a normal form cannot be obtained:
tensor nt;
t
a1:=nt(-a,d)*nt(-c,a);
d a
a1 := nt *nt
a c
a2:=nt(-c,-a)*nt(a,d);
a d
a2 := nt *nt
c a
% obviously, a1-a2 =0, but ....
canonical(a1-a2);
d a a d
- nt *nt + nt *nt
a c c a
% does give the same expression with the sign changed.
% zero is either:
canonical a1 -a2;
0
% or
a1 -canonical a2;
0
% below the result is a2:
canonical a1;
a d
nt *nt
c a
% below result is a1 again:
canonical ws;
d a
nt *nt
a c
% the above manipulations are NOT DONE if space is AFFINE
off onespace;
define_spaces aff={dd,affine};
t
make_tensor_belong_space(te,aff);
aff
% dummy indices MUST be declared to belong
% to a well defined space. here to 'aff':
mk_ids_belong_space({a,b},aff);
t
canonical(te(-a,a));
a
te
a
canonical(te(-a,a)+te(b,-b));
a a
te + te
a a
canonical(te(-a,c));
c
te
a
% put back the system in the previous status:
make_tensor_belong_anyspace te;
t
mk_ids_belong_anyspace a,b;
t
rem_spaces aff;
t
on onespace;
%
% 2. Summations with DELTA tensor.
%
make_partic_tens(delta,delta);
t
aa:=delta(a,-b)*delta(b,-c)*delta(c,-a) + 1;
a b c
aa := delta *delta *delta + 1
b c a
% below, answer is dim+1:
canonical aa;
dim + 1
aa:=delta(a,-b)*delta(b,-c)*delta(c,-d)*te(d,e)$
canonical aa;
a e
te
% 3. Summations with DELTA and ETA tensors.
make_partic_tens(eta,eta);
t
signature 1;
1
aa:=eta(a,b)*eta(-b,-c);
a b
aa := eta *eta
b c
canonical aa;
a
delta
c
aa:=eta(a,b)*eta(-b,-c)*eta(c,d);
a b c d
aa := eta *eta *eta
b c
canonical aa;
a d
eta
aa:=eta(a,b)*eta(-b,-c)*eta(d,c)*te(d,-a) +te(d,d);
a b c d d d d
aa := eta *eta *eta *te + te
b c a
canonical aa;
d d
2*te
aa:=delta(a,-b)*eta(b,c);
a b c
aa := delta *eta
b
canonical aa;
a c
eta
aa:=delta(a,-b)*delta(d,-a)*eta(-c,-d)*eta(b,c);
a d b c
aa := delta *delta *eta *eta
b a c d
% below the answer is dim:
canonical aa;
dim
aa:=delta(a,-b)*delta(d,-a)*eta(-d,-e)*te(f,g,e);
a d f g e
aa := delta *delta *eta *te
b a d e
canonical aa;
f g
te
b
% Summations with the addition of the METRIC tensor:
make_partic_tens(g,metric);
t
g(1,2,{x})==1/4*sin x;
sin(x)
--------
4
g({x},1,2);
sin(x)
--------
4
aa:=g(a,b)*g(-a,-c);
a b
aa := g *g
a c
canonical aa;
b
delta
c
aa:=g(a,b)*g(c,d)*eta(-c,-b);
a b c d
aa := eta *g *g
b c
% answer is g(a,d):
canonical aa;
a d
g
tensor te;
*** Warning: te redefined as generic tensor
t
aa:=g(a,b)*g(c,d)*eta(-c,-e)*eta(e,f)*te(-f,g);
e f a b c d g
aa := eta *eta *g *g *te
c e f
canonical aa;
a b d g
g *te
% Summations with the addition of the EPSILON tensor.
dummy_indices();
{c,f,b,a}
rem_dummy_indices a,b,c,f;
t
dummy_indices();
{}
wholespace_dim ?;
dim
signature ?;
1
% define the generalized delta function:
make_partic_tens(gd,del);
t
make_partic_tens(epsilon,epsilon);
t
aa:=epsilon(a,b)*epsilon(-c,-d);
a b
aa := epsilon *epsilon
c d
% Minus sign reflects the chosen signature.
canonical aa;
a b
- gd
c d
aa:=epsilon(a,b)*epsilon(-a,-b);
a b
aa := epsilon *epsilon
a b
canonical aa;
dim*( - dim + 1)
aa:=epsilon(a,b,c,d)*epsilon(-a,-b,-c,-e);
a b c d
aa := epsilon *epsilon
a b c e
canonical aa;
d 3 2
delta *( - dim + 6*dim - 11*dim + 6)
e
on exdelt;
% extract delta function down to the bottom:
aa:=epsilon(a,b,c)*epsilon(-b,-d,-e);
a b c
aa := epsilon *epsilon
b d e
canonical aa;
a c a c a c
delta *delta *dim - 2*delta *delta - delta *delta *dim
d e d e e d
a c
+ 2*delta *delta
e d
off exdelt;
% below expressed in terms of 'gd' tensor.
canonical aa;
a c
gd *(dim - 2)
d e
rem_dummy_indices a;
t
aa:=epsilon(- b,-c)*eta(a,b)*eta(a,c);
a b a c
aa := epsilon *eta *eta
b c
% answer below is zero:
canonical aa;
0
aa:=epsilon(a,b,c)*te(-a)*te(-b);
a b c
aa := epsilon *te *te
a b
% below the result is again zero.
canonical aa;
0
%
tensor tf,tg;
*** Warning: tf redefined as generic tensor
t
aa:=epsilon(a,b,c)*te(-a)*tf(-b)*tg(-c)+epsilon(d,e,f)*te(-d)*tf(-e)*tg(-f);
a b c d e f
aa := epsilon *te *tf *tg + epsilon *te *tf *tg
a b c d e f
% below the result is twice the first term.
canonical aa;
a b c
2*epsilon *te *tf *tg
a b c
aa:=epsilon(a,b,c)*te(-a)*tf(-c)*tg(-b)+epsilon(d,e,f)*te(-d)*tf(-e)*tg(-f);
a b c d e f
aa := epsilon *te *tf *tg + epsilon *te *tf *tg
a c b d e f
% below the result is zero.
canonical aa;
0
% An illustration when working inside several spaces.
rem_dummy_indices a,b,c,d,e,f;
t
off onespace;
define_spaces wholespace={dim,signature=1};
t
define_spaces sub4={4,signature=1};
t
define_spaces subd={dim-4,signature=0};
t
show_spaces();
{{wholespace,dim,signature=1},
{sub4,4,signature=1},
{subd,dim - 4,signature=0}}
make_partic_tens(epsilon,epsilon);
*** Warning: epsilon redefined as particular tensor
t
make_tensor_belong_space(epsilon,sub4);
sub4
make_partic_tens(kappa,epsilon);
*** Warning: kappa MUST belong to a space
t
make_tensor_belong_space(kappa,subd);
subd
show_epsilons();
{{kappa,subd},{epsilon,sub4}}
mk_ids_belong_space({i,j,k,l,m,n,r,s},sub4);
t
mk_ids_belong_space({a,b,c,d,e,f},subd);
t
off exdelt;
aa:=kappa(a,b,c)*kappa(-d,-e,-f)*epsilon(i,j,k,l)*epsilon(-k,-l,-i,-j);
i j k l a b c
aa := epsilon *epsilon *kappa *kappa
i j k l d e f
canonical aa;
a b c
- 24*gd
d e f
aa:=kappa(a,b,c)*kappa(-d,-e,-f)*epsilon(i,j,k,l)*epsilon(-m,-n,-r,-s);
i j k l a b c
aa := epsilon *epsilon *kappa *kappa
m n r s d e f
canonical aa;
a b c i j k l
- gd *gd
d e f m n r s
end;
Time for test: 1773 ms