<A NAME=Smithex_int>
<TITLE>Smithex_int</TITLE></A>
<b><a href=r37_idx.html>INDEX</a></b><p><p>
<B>SMITHEX\_INT</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P>
<P>
The operator <em>smithex_int</em> performs the same task as <em>smithex</em>
but on matrices containing only integer entries. Namely,
<em>smithex_int</em> returns {S,P,P^-1} where S is the smith normal
form of the input
<A HREF=r37_0345.html>matrix</A> (A say), and P*S*P^-1 = A.
<P>
<P>
<P> <H3>
syntax: </H3>
<em>smithex_int</em>(<matrix>)
<P>
<P>
<matrix> :- a rectangular
<A HREF=r37_0345.html>matrix</A> of integer entries.
<P>
<P>
<P>
<P> <H3>
examples: </H3>
<P><PRE><TT>
a := mat((9,-36,30),(-36,192,-180),(30,-180,180));
[ 9 -36 30 ]
[ ]
a := [-36 192 -180]
[ ]
[30 -180 180 ]
smithex_int(a);
[3 0 0 ] [-17 -5 -4 ] [1 -24 30 ]
[ ] [ ] [ ]
{ [0 12 0 ], [64 19 15 ], [-1 25 -30] }
[ ] [ ] [ ]
[0 0 60] [-50 -15 -12] [0 -1 1 ]
</TT></PRE><P>