<A NAME=MeijerG>
<TITLE>MeijerG</TITLE></A>
<b><a href=r37_idx.html>INDEX</a></b><p><p>
<B>MEIJERG</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P>
<P>
The <em>MeijerG</em> operator provides simplifications for Meijer's G
function. The simplifications are performed towards polynomials,
elementary or
special functions or (generalized)
<A HREF=r37_0528.html>hypergeometric</A> functions.
<P>
<P>
The <em>MeijerG</em> operator is included in the package specfn2.
<P>
<P>
<P> <H3>
syntax: </H3>
<em>MeijerG</em>(<list of parameters>,<list of parameters>,
<argument>)
<P>
<P>
<P>
The first element of the lists has to be the list containing the
first group (mostly called ``m'' and ``n'') of parameters. This passes
the four parameters of a Meijer's G function implicitly via the
length of the lists.
<P>
<P>
<P> <H3>
examples: </H3>
<P><PRE><TT>
load specfn2;
MeijerG({{},1},{{0}},x);
heaviside(-x+1)
MeijerG({{}},{{1+1/4},1-1/4},(x^2)/4) * sqrt pi;
2
sqrt(2)*sin(x)*x
------------------
4*sqrt(x)
</TT></PRE><P>Many well-known functions can be written as G functions,
e.g. exponentials, logarithms, trigonometric functions, Bessel functions
and hypergeometric functions.
The formulae can be found e.g. in
<P>
<P>
A.P.Prudnikov, Yu.A.Brychkov, O.I.Marichev:
Integrals and Series, Volume 3: More special functions,
Gordon and Breach Science Publishers (1990).
<P>
<P>
<P>