<A NAME=LegendreP>
<TITLE>LegendreP</TITLE></A>
<b><a href=r37_idx.html>INDEX</a></b><p><p>
<B>LEGENDREP</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P>
<P>
The binary <em>LegendreP</em> operator computes the nth Legendre
Polynomial which is
a special case of the nth Jacobi Polynomial with
<P>
<P>
LegendreP(n,x) := JacobiP(n,0,0,x)
<P>
<P>
The ternary form returns the associated Legendre Polynomial (see below).
<P>
<P>
<P> <H3>
syntax: </H3>
<em>LegendreP</em>(<integer>,<expression>) or
<P>
<P>
<em>LegendreP</em>(<integer>,<expression>,<expression>)
<P>
<P>
<P>
<P> <H3>
examples: </H3>
<P><PRE><TT>
LegendreP(3,xx);
2
xx*(5*xx - 3)
----------------
2
LegendreP(3,2,xx);
2
15*xx*( - xx + 1)
</TT></PRE><P>The ternary form of the operator <em>LegendreP</em> is the associa
ted
Legendre Polynomial defined as
<P>
<P>
P(n,m,x) = (-1)**m * (1-x**2)**(m/2) * df(LegendreP(n,x),x,m)
<P>
<P>
<P>