<A NAME=AGM_FUNCTION>
<TITLE>AGM_FUNCTION</TITLE></A>
<b><a href=r37_idx.html>INDEX</a></b><p><p>
<B>AGM_FUNCTION</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P>
<P>
The <em>AGM_function</em> operator returns a list of (N, AGM,
list of aNtoa0, list of bNtob0, list of cNtoc0) where a0, b0 and c0
are the initial values; N is the index number of the last term
used to generate the AGM. AGM is the Arithmetic Geometric Mean.
<P>
<P>
<P> <H3>
syntax: </H3>
<em>AGM_function</em>(<integer>,<integer>,<integer>)
<P>
<P>
<P>
<P> <H3>
examples: </H3>
<P><PRE><TT>
AGM_function(1,1,1)
1,1,1,1,1,1,0,1
AGM_function(1, 0.1, 1.3)
{6,
2.27985615996629,
{2.27985615996629, 2.27985615996629,
2.2798561599706, 2.2798624278857,
2.28742283656583, 2.55, 1},
{2.27985615996629, 2.27985615996629,
2.27985615996198, 2.2798498920555,
2.27230201920557, 2.02484567313166, 4.1},
{0, 4.30803136219904e-12, 0.0000062679151007581,
0.00756040868012758, 0.262577163434171, - 1.55, 5.9}}
</TT></PRE><P>The other Jacobi functions use this function with initial values
a0=1, b0=sqrt(1-m), c0=sqrt(m).
<P>
<P>
<P>