<A NAME=num_min>
<TITLE>num_min</TITLE></A>
<b><a href=r37_idx.html>INDEX</a></b><p><p>
<B>NUM_MIN</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P>
<P>
<P>
<P>
The Fletcher Reeves version of the <em>steepest descent</em>
algorithms is used to find the <em>minimum</em> of a
function of one or more variables. The
function must have continuous partial derivatives with respect to all
variables. The starting point of the search can be
specified; if not, random values are taken instead.
The steepest descent algorithms in general find only local
minima.
<P>
<P>
<P> <H3>
syntax: </H3>
<em>num_min</em>(<exp>,
<var>[=<val>] [,<var>[=<val>] ...
[,accuracy=<a>] [,iterations=<i>])
<P>
<P>
or
<P>
<P>
<em>num_min</em>(exp, {
<var>[=<val>] [,<var>[=<val>] ...] }
[,accuracy=<a>] [,iterations=<i>])
<P>
<P>
<P>
where <exp> is a function expression,
<var> are the variables in <exp> and
<val> are the (optional) start values.
For <a> and <i> see
<A HREF=r37_0423.html>numeric accuracy</A>.
<P>
<P>
<em>Num_min</em>tries to find the next local minimum along the descending
path starting at the given point. The result is a
<A HREF=r37_0053.html>list</A>
with the minimum function value as first element followed by a list
of
<A HREF=r37_0045.html>equation</A><em>s</em>, where the variables are equated to
the coordinates
of the result point.
<P>
<P>
<P> <H3>
examples: </H3>
<P><PRE><TT>
num_min(sin(x)+x/5, x)
{4.9489585606,{X=29.643767785}}
num_min(sin(x)+x/5, x=0)
{ - 1.3342267466,{X= - 1.7721582671}}
</TT></PRE><P>