<A NAME=PF>
<TITLE>PF</TITLE></A>
<b><a href=r37_idx.html>INDEX</a></b><p><p>
<B>PF</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P>
<P>
<P>
<P>
<P> <H3>
syntax: </H3>
pf(<expression>,<variable>)
<P>
<P>
<P>
<em>pf</em>transforms <expression> into a
<A HREF=r37_0053.html>list</A> of partial fraction
s
with respect to the main variable, <variable>. <em>pf</em> does a
complete partial fraction decomposition, and as the algorithms used are
fairly unsophisticated (factorization and the extended Euclidean
algorithm), the code may be unacceptably slow in complicated cases.
<P> <H3>
examples: </H3>
<P><PRE><TT>
pf(2/((x+1)^2*(x+2)),x);
2 -2 2
{-----,-----,------------}
X + 2 X + 1 2
X + 2*X + 1
off exp;
pf(2/((x+1)^2*(x+2)),x);
2 - 2 2
{-----,-----,--------}
X + 2 X + 1 2
(X + 1)
for each j in ws sum j;
2
----------------
2
( + 2)*(X + 1)
</TT></PRE><P><P>
<P>
If you want the denominators in factored form, turn
<A HREF=r37_0284.html>exp</A> off, as
shown in the second example above. As shown in the final example, the
<A HREF=r37_0047.html>for</A> <em>each</em> construct can be used to recombine t
he terms.
Alternatively, one can use the operations on lists to extract any desired
term.
<P>
<P>
<P>