<A NAME=DECOMPOSE>
<TITLE>DECOMPOSE</TITLE></A>
<b><a href=r37_idx.html>INDEX</a></b><p><p>
<B>DECOMPOSE</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P>
<P>
<P>
<P>
The <em>decompose</em> operator takes a multivariate polynomial as argument,
and returns an expression and a
<A HREF=r37_0053.html>list</A> of
<A HREF=r37_0045.html>equation</A>s from which the
original polynomial can be found by composition.
<P>
<P>
<P> <H3>
syntax: </H3>
<em>decompose</em>(<expression>) or <em>decompose</em>
<simple\_expression>
<P>
<P>
<P>
<P> <H3>
examples: </H3>
<P><PRE><TT>
decompose(x^8-88*x^7+2924*x^6-43912*x^5+263431*x^4-
218900*x^3+65690*x^2-7700*x+234)
2 2 2
U + 35*U + 234, U=V + 10*V, V=X - 22*X
decompose(u^2+v^2+2u*v+1)
2
W + 1, W=U + V
</TT></PRE><P>Unlike factorization, this decomposition is not unique. Further
details can be found in V.S. Alagar, M.Tanh, <Fast Polynomial
Decomposition>, Proc. EUROCAL 1985, pp 150-153 (Springer) and J. von zur
Gathen, <Functional>
<Decomposition of Polynomials: the Tame Case>, J.
Symbolic Computation (1990) 9, 281-299.
<P>
<P>
<P>