File r34/xlog/scope.log artifact 91d839bbc3 part of check-in 9992369dd3


Sat Jun 29 14:12:16 PDT 1991
REDUCE 3.4, 15-Jul-91 ...

1: 1: 
2: 2: 
3: 3: % Test SCOPE Package.

% NOTE:  The SCOPE, GHORNER, GSTRUCTR and GENTRAN packages must be loaded
% to run these tests.

on priall$


optimize z:=a^2*b^2+10*a^2*m^6+a^2*m^2+2*a*b*m^4+2*b^2*m^6+b^2*m^2
           iname s;


Sumscheme :

   || EC|Far
------------
  0||  1| Z
------------



Productscheme :

   |  0  1  2| EC|Far
---------------------
  1|     2  2|  1| 0
  2|  6     2| 10| 0
  3|  2     2|  1| 0
  4|  4  1  1|  2| 0
  5|  6  2   |  2| 0
  6|  2  2   |  1| 0
---------------------
0  : M
1  : B
2  : A

Number of operations in the input is: 

Number of (+,-)-operations : 5
Number of (*)-operations : 10
Number of integer exponentiations : 11
Number of other operations : 0

Time: 51 ms

Breuer search : 
Time: 85 ms


Removal of different names for identical cse's : 
Time: 17 ms


Change Scheme : 
Time: 0 ms


Local Factorization : 
Time: 0 ms


Breuer search : 
Time: 34 ms


Removal of different names for identical cse's : 
Time: 0 ms


Change Scheme : 
Time: 0 ms


Local Factorization : 
Time: 0 ms


Breuer search : 
Time: 34 ms


Removal of different names for identical cse's : 
Time: 0 ms


Change Scheme : 
Time: 0 ms


Local Factorization : 
Time: 0 ms


Additional optimization during finishing touch :
Time: 0 ms



S0 := B*A
S4 := M*M
S1 := S4*B*B
S2 := S4*A*A
S3 := S4*S4
Z := S1 + S2 + S0*(2*S3 + S0) + S3*(2*S1 + 10*S2)



Number of operations after optimization is:

Number of (+,-)-operations : 5
Number of (*)-operations : 12
Number of integer exponentiations : 0
Number of other operations : 0



Sumscheme :

   |  0  3  4  5| EC|Far
------------------------
  0|        1  1|  1| Z
 15|        2 10|  1| 14
 17|  2  1      |  1| 16
------------------------
0  : S3
3  : S0
4  : S1
5  : S2



Productscheme :

   |  8  9 10 11 17 18 19 20| EC|Far
------------------------------------
  7|                    1  1|  1| S0
  8|  1                 2   |  1| S1
  9|  1                    2|  1| S2
 10|  2                     |  1| S3
 11|                 2      |  1| S4
 14|     1                  |  1| 0
 16|              1         |  1| 0
------------------------------------
8  : S4
9  : S3
10 : S2
11 : S1
17 : S0
18 : M
19 : B
20 : A



Time: 51 ms


off priall$


on primat,acinfo$


optimize
     ghorner <<z:=a^2*b^2+10*a^2*m^6+a^2*m^2+2*a*b*m^4+2*b^2*m^6+b^2*m^2>>
     vorder m
     iname s;


      2  2    2    2    2     2           2      2      2
Z := A *B  + M *((A  + B ) + M *(2*A*B + M *(10*A  + 2*B )))

Sumscheme :

   || EC|Far
------------
  0||  1| Z
  3||  1| 2
  7||  1| 6
 10||  1| 9
------------



Productscheme :

   |  0  1  2| EC|Far
---------------------
  1|     2  2|  1| 0
  2|  2      |  1| 0
  4|        2|  1| 3
  5|     2   |  1| 3
  6|  2      |  1| 3
  8|     1  1|  2| 7
  9|  2      |  1| 7
 11|        2| 10| 10
 12|     2   |  2| 10
---------------------
0  : M
1  : B
2  : A

Number of operations in the input is: 

Number of (+,-)-operations : 5
Number of (*)-operations : 8
Number of integer exponentiations : 9
Number of other operations : 0


S0 := B*A
S1 := B*B
S2 := A*A
S3 := M*M
Z := S0*S0 + S3*(S1 + S2 + S3*(2*S0 + S3*(2*S1 + 10*S2)))



Number of operations after optimization is:

Number of (+,-)-operations : 5
Number of (*)-operations : 11
Number of integer exponentiations : 0
Number of other operations : 0



Sumscheme :

   |  0  1  2| EC|Far
---------------------
  0|         |  1| Z
  3|     1  1|  1| 2
  7|  2      |  1| 6
 10|     2 10|  1| 9
---------------------
0  : S0
1  : S1
2  : S2



Productscheme :

   |  3  4  5  9 10 11 12| EC|Far
---------------------------------
  1|           2         |  1| 0
  2|  1                  |  1| 0
  6|  1                  |  1| 3
  9|  1                  |  1| 7
 13|                 1  1|  1| S0
 14|                 2   |  1| S1
 15|                    2|  1| S2
 16|              2      |  1| S3
---------------------------------
3  : S3
4  : S2
5  : S1
9  : S0
10 : M
11 : B
12 : A


operator a$


k:=j:=1$


u:=c*x+d$


v:=sin(u)$


optimize {a(k,j):=v*(v^2*cos(u)^2+u),
          a(k,j)::=:v*(v^2*cos(u)^2+u)} iname s;


              2       2
A(K,J) := V*(V *COS(U)  + U)

A(1,1) := 

            3             2
SIN(C*X + D) *COS(C*X + D)  + SIN(C*X + D)*C*X + SIN(C*X + D)*D

Sumscheme :

   |  7  8| EC|Far
------------------
  1|  1   |  1| 0
  3|      |  1| S2
  5|     1|  1| S4
------------------
7  : U
8  : D



Productscheme :

   |  0  1  2  3  4  5  6| EC|Far
---------------------------------
  0|                    1|  1| S0
  2|                 2  2|  1| 1
  4|     2  3            |  1| 3
  6|           1  1      |  1| 5
  7|        1  1  1      |  1| 3
  8|  1     1            |  1| 3
---------------------------------
0  : D
1  : S5=COS(S4)
2  : S3=SIN(S4)
3  : X
4  : C
5  : S1=COS(U)
6  : V

Number of operations in the input is: 

Number of (+,-)-operations : 7
Number of (*)-operations : 10
Number of integer exponentiations : 4
Number of other operations : 5


S8 := COS(U)*V
A(K,J) := V*(U + S8*S8)
S4 := X*C + D
S3 := SIN(S4)
S9 := COS(S4)*S3
A(1,1) := S3*(S4 + S9*S9)



Number of operations after optimization is:

Number of (+,-)-operations : 3
Number of (*)-operations : 7
Number of integer exponentiations : 0
Number of other operations : 3



Sumscheme :

   |  2  3 12 13| EC|Far
------------------------
  1|        1   |  1| 0
  3|            |  1| S2
  5|     1     1|  1| S4
 11|  1         |  1| 10
------------------------
2  : S4
3  : S6
12 : U
13 : D



Productscheme :

   |  0  1  4  5  6  7  8  9 10 11| EC|Far
------------------------------------------
  0|                             1|  1| S0
  2|     2                        |  1| 1
  4|  2                           |  1| 11
  9|                    1  1      |  1| S6
 10|                 1            |  1| 3
 13|                          1  1|  1| S8
 14|              1  1            |  1| S9
------------------------------------------
0  : S9
1  : S8
4  : S6
5  : D
6  : S5=COS(S4)
7  : S3=SIN(S4)
8  : X
9  : C
10 : S1=COS(U)
11 : V


off exp$


optimize {a(k,j):=v*(v^2*cos(u)^2+u),
          a(k,j)::=:v*(v^2*cos(u)^2+u)} iname s;


              2       2
A(K,J) := V*(V *COS(U)  + U)

                       2             2
A(1,1) := (SIN(C*X + D) *COS(C*X + D)  + C*X + D)*SIN(C*X + D)

Sumscheme :

   |  6  7| EC|Far
------------------
  1|  1   |  1| 0
  4|     1|  1| 3
  6|     1|  1| S4
------------------
6  : U
7  : D



Productscheme :

   |  0  1  2  3  4  5| EC|Far
------------------------------
  0|                 1|  1| S0
  2|              2  2|  1| 1
  3|     1            |  1| S2
  5|  2  2            |  1| 4
  7|        1  1      |  1| 6
  8|        1  1      |  1| 4
------------------------------
0  : S5=COS(S4)
1  : S3=SIN(S4)
2  : X
3  : C
4  : S1=COS(U)
5  : V

Number of operations in the input is: 

Number of (+,-)-operations : 6
Number of (*)-operations : 8
Number of integer exponentiations : 4
Number of other operations : 4


S8 := COS(U)*V
A(K,J) := V*(U + S8*S8)
S4 := X*C + D
S3 := SIN(S4)
S9 := COS(S4)*S3
A(1,1) := S3*(S4 + S9*S9)



Number of operations after optimization is:

Number of (+,-)-operations : 3
Number of (*)-operations : 7
Number of integer exponentiations : 0
Number of other operations : 3



Sumscheme :

   |  2  3 11 12| EC|Far
------------------------
  1|        1   |  1| 0
  4|  1         |  1| 3
  6|     1     1|  1| S4
------------------------
2  : S4
3  : S6
11 : U
12 : D



Productscheme :

   |  0  1  4  5  6  7  8  9 10| EC|Far
---------------------------------------
  0|                          1|  1| S0
  2|     2                     |  1| 1
  3|              1            |  1| S2
  5|  2                        |  1| 4
  9|                 1  1      |  1| S6
 11|                       1  1|  1| S8
 12|           1  1            |  1| S9
---------------------------------------
0  : S9
1  : S8
4  : S6
5  : S5=COS(S4)
6  : S3=SIN(S4)
7  : X
8  : C
9  : S1=COS(U)
10 : V


off primat,acinfo,period$


on fort$


optimize z:=(6*a+18*b+9*c+3*d+6*e+18*f+6*g+5*h+5*k+3)^13 iname s;



      S0=5.0*(H+K)+3.0*(3.0*C+D+1.0+6.0*(B+F)+2.0*(A+EXP(1.0)+G))
      S3=S0*S0*S0
      S2=S3*S3
      Z=S0*S2*S2

optimize {x:=3*a*p,y:=3*a*q,z:=6*a*r+2*b*p,u:=6*a*d+2*b*q,
v:=9*a*c+4*b*d,w:=4*b} iname s;



      S2=3.0*A
      X=S2*P
      Y=S2*Q
      S1=2.0*B
      S3=6.0*A
      Z=S1*P+S3*R
      U=S1*Q+S3*D
      S0=4.0*B
      V=S0*D+9.0*C*A
      W=S0

off fort$


clear a$


matrix a(2,2)$


a(1,1):=x+y+z$


a(1,2):=x*y$


a(2,1):=(x+y)*x*y$


a(2,2):=(x+2*y+3)^3-x$


on acinfo$


optimize gstructr<<a;
                   aa:=(x+y)^2;b:=(x+y)*(y+z);c:=(x+2*y)*(y+z)*(z+x)^2>>
name v iname s;


A(1,1) := X + Y + Z

A(1,2) := X*Y

V2 := X + Y

A(2,1) := V2*X*Y

                       3
A(2,2) := (X + 2*Y + 3)  - X

        2
AA := V2

V5 := Y + Z

B := V2*V5

                      2
C := (X + 2*Y)*(X + Z) *V5

Number of operations in the input is: 

Number of (+,-)-operations : 9
Number of (*)-operations : 8
Number of integer exponentiations : 3
Number of other operations : 0


S5 := X + Z
A(1,1) := S5 + Y
S8 := Y*X
A(1,2) := S8
V2 := X + Y
A(2,1) := S8*V2
S6 := X + 2*Y
S4 := S6 + 3
A(2,2) := S4*S4*S4 - X
AA := V2*V2
V5 := Y + Z
B := V5*V2
C := S6*S5*S5*V5



Number of operations after optimization is:

Number of (+,-)-operations : 7
Number of (*)-operations : 10
Number of integer exponentiations : 0
Number of other operations : 0


clear a$


off fort;


on priall$


optimize z:=:for j:=2:6 sum a^(1/j) iname s;


         1/3               1/4     1/5     1/6
Z := (((A    + SQRT(A)) + A   ) + A   ) + A

Sumscheme :

   || EC|Far
------------
  0||  1| Z
------------



Productscheme :

   |  0| EC|Far
---------------
  1| 20|  1| 0
  2| 30|  1| 0
  3| 15|  1| 0
  4| 12|  1| 0
  5| 10|  1| 0
---------------
0  : A

Number of operations in the input is: 

Number of (+,-)-operations : 4
Number of (*)-operations : 0
Number of integer exponentiations : 0
Number of other operations : 5

Time: 1717 ms

Breuer search : 
Time: 102 ms


Removal of different names for identical cse's : 
Time: 0 ms


Change Scheme : 
Time: 0 ms


Local Factorization : 
Time: 0 ms


Breuer search : 
Time: 34 ms


Removal of different names for identical cse's : 
Time: 17 ms


Change Scheme : 
Time: 0 ms


Local Factorization : 
Time: 0 ms


Breuer search : 
Time: 34 ms


Removal of different names for identical cse's : 
Time: 0 ms


Change Scheme : 
Time: 0 ms


Local Factorization : 
Time: 0 ms


Breuer search : 
Time: 17 ms


Removal of different names for identical cse's : 
Time: 0 ms


Change Scheme : 
Time: 0 ms


Local Factorization : 
Time: 0 ms


Additional optimization during finishing touch :
Time: 0 ms



      1/60
A := A
S7 := A*A
S6 := S7*A
S4 := S7*S6
S2 := S4*S4
S1 := S7*S2
S0 := S6*S1
S3 := S4*S0
Z := S2 + S1 + S0 + S3 + S3*S2



Number of operations after optimization is:

Number of (+,-)-operations : 4
Number of (*)-operations : 8
Number of integer exponentiations : 0
Number of other operations : 1



Sumscheme :

   |  3  4  5  6| EC|Far
------------------------
  0|  1  1  1  1|  1| Z
------------------------
3  : S2
4  : S1
5  : S0
6  : S3



Productscheme :

   |  9 10 12 13 14 15 16 22| EC|Far
------------------------------------
  2|           1  1         |  1| 0
  6|     1           1      |  1| S0
  7|  1           1         |  1| S1
  8|        2               |  1| S2
  9|        1           1   |  1| S3
 10|  1  1                  |  1| S4
 12|  1                    1|  1| S6
 13|                       2|  1| S7
------------------------------------
9  : S7
10 : S6
12 : S4
13 : S3
14 : S2
15 : S1
16 : S0
22 : A



Time: 34 ms


off acinfo,priall$


on optdecs$


optlang!*:='fortran$


optimize {x(i+1,i-1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)} iname s
         declare <<x(4),a(4,4),y(5):real;b(5):integer>>;



      INTEGER B(5),I,S1,S2
      REAL A(4,4),S4,X(4),Y(5)
      S1=I+1.0
      S2=I-1.0
      S4=B(I)
      X(S1,S2)=A(S1,S2)+S4
      Y(S2)=A(S2,S1)-S4

optlang!*:='c$


optimize {x(i+1,i-1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)} iname s
         declare <<x(4),a(4,4),y(5):real;b(5):integer>>;



int B[6],I,S1,S2;
float A[5][5],S4,X[5],Y[6];
{
    S1=I+1.0;
    S2=I-1.0;
    S4=B[I];
    X[S1][S2]=A[S1][S2]+S4;
    Y[S2]=A[S2][S1]-S4;
}

optlang!*:= 'pascal$


optimize {x(i+1,i-1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)} iname s
         declare <<x(4),a(4,4),y(5):real;b(5):integer>>;



VAR
    S2,S1,I: INTEGER;
    B: ARRAY[0..5] OF INTEGER;
    S4: REAL;
    Y: ARRAY[0..5] OF REAL;
    X: ARRAY[0..4] OF REAL;
    A: ARRAY[0..4,0..4] OF REAL;
BEGIN
    S1:=I+1.0;
    S2:=I-1.0;
    S4:=B[I];
    X[S1,S2]:=A[S1,S2]+S4;
    Y[S2]:=A[S2,S1]-S4
END;

optlang!*:='ratfor$


optimize {x(i+1,i-1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)} iname s
         declare <<x(4),a(4,4),y(5):real;b(5):integer>>;



INTEGER B(5),I,S1,S2
REAL A(4,4),S4,X(4),Y(5)
{
    S1=I+1.0
    S2=I-1.0
    S4=B(I)
    X(S1,S2)=A(S1,S2)+S4
    Y(S2)=A(S2,S1)-S4
}


end;

4: 4: 
Quitting
Sat Jun 29 14:12:22 PDT 1991


REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]