module camal; % Package for calculations in celestial mechanics.
% Author: John P. Fitch <jpff@maths.bath.ac.uk>
create!-package('(camal fourdom fourplus makefour hsub hdiff),
'(contrib camal));
%% This section is to define macros and simple functions to handle the
%% data structures for harmonic forms.
%% The structure is a vector:
%% Coeff | FN | Angle | Next
%
%% This version only allows 8 angles. Consider extending this later.
switch fourier;
%% A vector and counter to record link between angle names and index
global '(next!-angle!* fourier!-name!*);
next!-angle!* := 0;
if vectorp fourier!-name!* then <<
for i :=0:7 do remprop(getv(fourier!-name!*, i),'fourier!-angle)
>>;
fourier!-name!* := mkvect 7;
%% For non Cambridge LISP add
smacro procedure putv!.unsafe(x,y,z); putv(x,y,z);
smacro procedure getv!.unsafe(x,y); getv(x,y);
%% Data abtraction says that we should define macros for access to
%% the parts of the Fourier structure
smacro procedure fs!:set!-next(f,p); putv!.unsafe(f, 3, p);
smacro procedure fs!:next(f); getv!.unsafe(f,3);
smacro procedure fs!:set!-coeff(f,p); putv!.unsafe(f, 0, p);
smacro procedure fs!:coeff(f); getv!.unsafe(f, 0);
smacro procedure fs!:set!-fn(f,p); putv!.unsafe(f, 1, p);
smacro procedure fs!:fn(f); getv!.unsafe(f, 1);
smacro procedure fs!:set!-angle(f,p); putv!.unsafe(f, 2, p);
smacro procedure fs!:angle(f); getv!.unsafe(f, 2);
%% Some support functions for angle expressions
symbolic procedure fs!:make!-nullangle();
begin scalar ans;
ans := mkvect 7;
for i:=0:7 do putv!.unsafe(ans,i,0);
return ans;
end;
symbolic procedure fs!:null!-angle!: u;
fs!:null!-angle cdr u;
symbolic procedure fs!:null!-angle u;
begin scalar ans, i, x;
x := fs!:angle u;
ans := t;
i := 0;
top:
if not(getv!.unsafe(x,i)=0) then return nil;
i := i+1;
if (i<8) then go to top;
return ans;
end;
endmodule;
end;