File r38/log/polydiv.rlg artifact 97a646b26c part of check-in 5f584e9b52


Tue Apr 15 00:32:21 2008 run on win32
% polydiv.tst  -*- REDUCE -*-

% Test and demonstration file for enhanced polynomial division
% file polydiv.red.

% F.J.Wright@Maths.QMW.ac.uk, 7 Nov 1995.

% The example from "Computer Algebra" by Davenport, Siret & Tournier,
% first edition, section 2.3.3.

% First check that remainder still works as before.

% Compute the gcd of the polynomials a and b by Euclid's algorithm:
a := aa := x^8 + x^6 - 3x^4 - 3x^3 + 8x^2 + 2x - 5;


            8    6      4      3      2
a := aa := x  + x  - 3*x  - 3*x  + 8*x  + 2*x - 5

b := bb := 3x^6 + 5x^4 - 4x^2 - 9x + 21;


              6      4      2
b := bb := 3*x  + 5*x  - 4*x  - 9*x + 21

on rational;

  off allfac;


c := remainder(a, b);


         5   4    1   2    1
c :=  - ---*x  + ---*x  - ---
         9        9        3
  a := b$

  b := c$


c := remainder(a, b);


         117   2          441
c :=  - -----*x  - 9*x + -----
         25               25
  a := b$

  b := c$


c := remainder(a, b);


      233150       102500
c := --------*x - --------
      19773         6591
  a := b$

  b := c$


c := remainder(a, b);


         1288744821
c :=  - ------------
         543589225
  a := b$

  b := c$


c := remainder(a, b);


c := 0

off rational;



% Repeat using pseudo-remainders, to avoid rational arithmetic:
a := aa;


      8    6      4      3      2
a := x  + x  - 3*x  - 3*x  + 8*x  + 2*x - 5

b := bb;


        6      4      2
b := 3*x  + 5*x  - 4*x  - 9*x + 21

c := pseudo_remainder(a, b);


            4      2
c :=  - 15*x  + 3*x  - 9
  a := b$

  b := c$


c := pseudo_remainder(a, b);


            2
c := 15795*x  + 30375*x - 59535
  a := b$

  b := c$


c := pseudo_remainder(a, b);


c := 1254542875143750*x - 1654608338437500
  a := b$

  b := c$


c := pseudo_remainder(a, b);


c := 12593338795500743100931141992187500
  a := b$

  b := c$


c := pseudo_remainder(a, b);


c := 0



% Example from Chris Herssens <herc@sulu.luc.ac.be>
% involving algebraic numbers in the coefficient ring
% (for which naive pseudo-division fails in REDUCE):
factor x;


a:=8*(15*sqrt(2)*x**3 + 18*sqrt(2)*x**2 + 10*sqrt(2)*x + 12*sqrt(2) -
   5*x**4 - 6*x**3 - 30*x**2 - 36*x);


            4    3                       2
a :=  - 40*x  + x *(120*sqrt(2) - 48) + x *(144*sqrt(2) - 240)

      + x*(80*sqrt(2) - 288) + 96*sqrt(2)

b:= - 16320*sqrt(2)*x**3 - 45801*sqrt(2)*x**2 - 50670*sqrt(2)*x -
   26534*sqrt(2) + 15892*x**3 + 70920*x**2 + 86352*x + 24780;


      3                               2
b := x *( - 16320*sqrt(2) + 15892) + x *( - 45801*sqrt(2) + 70920)

      + x*( - 50670*sqrt(2) + 86352) - 26534*sqrt(2) + 24780


pseudo_remainder(a, b, x);


 2                  3/2
x *( - 51343372800*2    + 72663731640*2 + 106394745600*sqrt(2) - 152808065280) +

                    3/2
 x*( - 77924736000*2    + 111722451600*2 + 167518488000*sqrt(2) - 236076547200)

                3/2
 - 26395315200*2    + 21508247760*2 + 58006274400*sqrt(2) - 51393323520

% Note: We must specify the division variable even though the
% polynomials are apparently univariate:
pseudo_remainder(a, b);


*** Main division variable selected is 2**(1/2) 

        7           6            5            4            3            2
652800*x  + 708360*x  - 2656800*x  - 2660160*x  + 4017600*x  + 3676320*x

 - 2630400*x - 2378880


% Confirm that quotient * b + remainder = constant * a:
pseudo_divide(a, b, x);


{x*(652800*sqrt(2) - 635680) - 1958400*2 + 858360*sqrt(2) + 2073984,

  2                  3/2
 x *( - 51343372800*2    + 72663731640*2 + 106394745600*sqrt(2) - 152808065280) 

 + x

                   3/2
 *( - 77924736000*2    + 111722451600*2 + 167518488000*sqrt(2) - 236076547200)

                 3/2
  - 26395315200*2    + 21508247760*2 + 58006274400*sqrt(2) - 51393323520}

first ws * b + second ws;


 4
x *(20748595200*sqrt(2) - 31409618560)

    3
 + x *(119127169920*sqrt(2) - 162183113472)

    2
 + x *(237566198016*sqrt(2) - 337847596800)

 + x*(212209122560*sqrt(2) - 309143634432) + 75383084544*sqrt(2) - 99593256960

ws / a;


  4                                      3
(x *(2593574400*sqrt(2) - 3926202320) + x *(14890896240*sqrt(2) - 20272889184)

     2
  + x *(29695774752*sqrt(2) - 42230949600)

  + x*(26526140320*sqrt(2) - 38642954304) + 9422885568*sqrt(2) - 12449157120)/(

         4    3                     2
    - 5*x  + x *(15*sqrt(2) - 6) + x *(18*sqrt(2) - 30) + x*(10*sqrt(2) - 36)

    + 12*sqrt(2))
                                 % is this constant?
on rationalize;


ws;


 - 518714880*sqrt(2) + 785240464
                                     % yes, it is constant
off rationalize;



on allfac;

  remfac x;



procedure test_pseudo_division(a, b, x);
   begin scalar qr, L;
      qr := pseudo_divide(a, b, x);
      L := lcof(b,x);
      %% For versions of REDUCE prior to 3.6 use:
      %% L := if b freeof x then b else lcof(b,x);
      if first qr * b + second qr =
         L^(deg(a,x)-deg(b,x)+1) * a then
         write "Pseudo-division OK"
      else
         write "Pseudo-division failed"
   end;


test_pseudo_division


a := 5x^4 + 4x^3 + 3x^2 + 2x + 1;


        4      3      2
a := 5*x  + 4*x  + 3*x  + 2*x + 1

test_pseudo_division(a, x, x);


Pseudo-division OK

test_pseudo_division(a, x^3, x);


Pseudo-division OK

test_pseudo_division(a, x^5, x);


Pseudo-division OK

test_pseudo_division(a, x^3 + x, x);


Pseudo-division OK

test_pseudo_division(a, 0, x);


***** Zero divisor 
          % intentional error!
test_pseudo_division(a, 1, x);


Pseudo-division OK


test_pseudo_division(5x^3 + 7y^2, 2x - y, x);


Pseudo-division OK

test_pseudo_division(5x^3 + 7y^2, 2x - y, y);


Pseudo-division OK


end;


Time for test: 9 ms


REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]