File r38/packages/mathml/mathml.red artifact 4e23795f6b part of check-in 52fc28dabe


module mathml;

% Version 5 August 1999
 
% Modified by FJW, 22 May 2000
% Modified by Winfried Neun , 1 August 2000
% Modified by Winfried Neun , 18 December 2000

fluid '(atts ch cha char count file!* pvar rdci!* rdelems!* rdlist!*
	rdreln!* space safe_atts temp2 unary!* !*mathprint
	consts_compl consts_int flagg found_compl found_int consts_mat_int
	consts_mat_compl found_mat_compl found_mat_int indent);

%Declaration of some switches.

%_mathml_ allows all output to be printed in mathml.
%_both_ allows all output to be printed in mathml and in normal reduce
%output.

load!-package 'assist;
load!-package 'ineq;
load!-package 'matrix;
roundconstants();

global '(f);

global '(!*mathml);
switch mathml;
global '(!*both);
switch both;
global '(!*web);
switch web;

LISP (FILE!*:=nil);
!*mathml:=nil;
!*both:=nil;
!*web:=nil;

off both;
off mathml;
off web;

%Declaration of a series of lists which contain the function to be executed 
%when the token (cadr) is found.

%Tokens to be found between <ci></ci> tags.

RDci!*:='
((!&imaginaryi!; . (consts 'i))
(!&ii!; . (consts 'i))
(!&exponential!; . (consts 'e))
(!&ee!; . (consts 'e))
(!&pi!; . (consts 'p))
(!&differentiald!; . (const 'd))
(!&dd!; . (consts 'd)));

%Tokens to be found between <reln></reln> tags.

RDreln!*:=
'((tendsto . (tendstoRD ))
(eq!/ . (relationRD 'eq))
(neq!/ . (relationRD 'neq))
(lt!/ . (relationRD 'lt))
(gt!/ . (relationRD 'gt))
(geq!/ . (relationRD 'geq))
(leq!/ . (relationRD 'leq))
(in!/ . (inRD ))
(notin!/ . (notinRD ))
(subset!/ . (relationRD 'subset))
(prsubset!/ . (relationRD 'prsubset))
(notprsubset!/ . (notprsubsetRD ))
(notsubset!/ . (notsubsetRD )));

%Tokens to be found between <apply></apply> tags.

RDlist!*:= append(RDreln!*,
'((divide!/ . (divideRD))
(setdiff!/ . ( setdiffRD))
(select!/ . (selectRD))
(transpose!/ . ( transposeRD))
(determinant!/ . ( determinantRD))
(fn . ( applyfnRD))
(union!/ . (unionRD))
(intersect!/ . (intersectionRD))
(implies!/ . ( impliesRD))
(not!/ . ( notRD))
(xor!/ . (xorRD))
(or!/ . (orRD))
(and!/ . (andRD))
(mean!/ . ( meanRD))
(var!/ . ( varRD))
(sdev!/ . ( sdevRD))
(moment!/ . ( momentRD))
(median!/ . ( medianRD))
(sin!/ . ( sinRD))
(sec!/ . ( secRD))
(sinh!/ . ( sinhRD))
(sech!/ . ( sechRD))
(arcsin!/ . ( arcsinRD))
(cos!/ . ( cosRD))
(csc!/ . ( cscRD))
(cosh!/ . ( coshRD))
(csch!/ . ( cschRD))
(arccos!/ . ( arccosRD))
(tan!/ . ( tanRD))
(cot!/ . ( cotRD))
(tanh!/ . ( tanhRD))
(coth!/ . ( cothRD))
(arctan!/ . ( arctanRD))
(abs!/ . ( absRD))
(ln!/ . ( lnRD))
(plus!/ . ( plusRD))
(times!/ . ( timesRD))
(power!/ . ( powerRD))
(exp!/ . ( expRD))
(factorial!/ . ( factorialRD))
(quotient!/ . ( quotientRD))
(max!/ . ( maxRD))
(min!/ . ( minRD))
(minus!/ . ( minusRD))
(rem!/ . (remRD))
(conjugate!/ . ( conjugateRD))
(root!/ . ( rootRD))
(gcd!/ . ( gcdRD))
(log!/ . (logRD))
(int!/ . (intRD))
(sum!/ . ( sumRD))
(limit!/ . (limitRD))
(condition . (conditionRD))
(product!/ . (productRD))
(diff!/ . (diffRD))
(partialdiff!/ . (partialdiffRD))));

RDelems!* :=
'((reln . (relnRD !/reln "</reln>"))
(set . ( setRD !/set "</set>"))
(fn . ( fnRD !/fn "</fn>"))
(declare . ( declareRD !/declare "</declare>"))
(list . ( listRD !/list "</list>"))
(matrix . ( matrixRD !/matrix "</matrix>"))
(cn . ( cnML !/cn "</cn>"))
(ci . ( ciML !/ci "</ci>"))
(lambda . ( lambdaRD !/lambda "</lambda>")));

unary!* :=
'((determinant . (unary determinant))
(transpose . (unary transpose))
(sum . (sum_prodML sum))
(prod . (sum_prodML product))
(df . (dfML nil)) 	   % FJW: (df.(dfML df))
(impart . (complpart impart))
(repart . (complpart repart))
(abs . (unary abs))
(gcd . (n_nary gcd))
(set . (setML set))
(factorial . (unary factorial))
(max . (n_nary max))
(min . (n_nary min))
(cos . (unary cos))
(sin . (unary sin))
(sec . (unary sec))
(cosh . (unary cosh))
(cot . (unary cot))
(coth . (unary coth))
(csch . (unary csch))
(acos . (trigML acos))
(asin . (trigML asin))
(atan . (trigML atan))
(sech . (unary sech))
(sinh . (unary sinh))
(tan . (unary tan))
(tanh . (unary tanh))
(csc . (unary csc))
(quotient . (quotientML nil))
(plus . (n_nary plus))
(times . (n_nary times))
(expt . (n_nary power))
(sqrt . (sqrtML sqrt))
(log . (unary log))
(logb . (log_baseML logb))
(log10 . (log_baseML log10))
(ln . (unary ln))
(eq . (reln eq))
(neq . (reln neq))
(gt . (reln gt))
(lt . (reln lt))
(greaterp . (reln gt))
(lessp . (reln lt))
(geq . (reln geq))
(leq . (reln leq))
(union . (sets union))
(intersection . (sets intersection))
(in . (reln in))
(notin . (reln notin))
(subset . (reln subset))
(prsubset . (reln prsubset))
(notsubset . (reln notsubset))
(notprsubset . (reln notprsubset))
(setdf . (sets setdf))
(arbcomplex . (printsub2 cadr arbcomplex))
(arbint . (printsub2 cadr arbint))
(mat . (matrixML nil))
(minus . (minusML nil))
(int . (integralML nil))
(equal . (equalML nil))
(list . (listML nil)));


%The next three functions are the lexer. When called they returns the next
%mathml token in the input stream. 

symbolic procedure lex();
begin scalar token;
 token:=nil;
 if atts neq nil then safe_atts:=atts;
 atts:=nil;
 if ch neq !$EOF!$ then <<
  if ch=space then while (ch:=readch())=space do
  else
   if ch='!< then char:=get_token()
   else char:=get_content();
   if char neq nil then
   <<  count:=count+1;
       token:=reverse char;
       char:=butes(token);
%By decomenting the following line, the tokens read in are one by one
%printed onto the output stream.
%       print char;
       attributes(char,token)>>
    else lex(); >>
end;


symbolic procedure get_token();
begin scalar d;
 d:=();
 while (ch:=readch()) neq '!> do d:=cons(ch,d);
 return cons('!$,d);
end;


symbolic procedure get_content();
begin scalar d;
 d:=();
 while (ch:=readch()) neq '!< AND ch neq !$EOF!$
do
    if ch neq space AND id2int(ch)>10 then
d:=cons(ch,d);
 if d neq nil then d:=cons('!$,d);
 return d;
end;


%This function will search the list of attributes _att_ for the attribute
%named _key_

symbolic procedure search_att( att, key);
begin scalar l, stop,d;
 l:=nil;
 d:=();
 stop:=0;
 att:= find(att, key);
 if att neq '(stop) then 
 <<
 while (car att='! ) do att:=cdr att;
 if (car att = '!=) then
   <<
     att:=cdr att;
     while (car att='! ) do att:=cdr att;
     if (car att='!") then
      << att:=cdr att;
         while (stop=0) do
          << d:=cons(car att, d);
             att:=cdr att;
             if (car att='!  ) OR (car att='!$) then stop:=1
          >>
      >>
      else
         while (stop=0) do
          << d:=cons(car att, d);
             att:=cdr att;
             if (car att='!  ) OR (car att='!$) then stop:=1
          >>
   >>
 else
 errorML(compress key,1);
 if car d='!" then d:=cdr d;
 return reverse d
 >>
end;
 
symbolic procedure find(fatt, fkey);
begin;
return if fkey= '() then if fatt neq nil then cdr fatt else '(stop)
          else
          find(member(car fkey, fatt), cdr fkey);
end;
         
symbolic procedure attributes(a,b);
begin scalar l;
 l:=length a;
 for a:=1:l do b:=cdr b;
 while (car b='! ) do b:=cdr b;
 if b neq '(!$) then  atts:=b;         
end;


symbolic procedure butes( str );
%Removes all attributes to a token.
begin cha;
cha:=car str;
return if (cha='!  OR cha='!$) then <<'(); >>
        else  cons(car str, butes cdr str);
end;


%This is the MAIN function. It is given the name of a file which contains
%the mathml input. It launches the program by calling parseML().

symbolic procedure mml(ff);
begin;
 FILE!*:=t;
 ff:= open(ff, 'input);
 ff:= rds(ff);
 parseML();
 close rds ff;
 FILE!*:=nil; 
end;

%This function starts the parsing mechanism, which is a recursive descent
%parsing.


symbolic procedure parseML();
begin scalar res, vswitch;
 res:=nil;
 vswitch:=nil;
%  FLUID '(safe_atts char ch atts count temp space temp2);
 space:=int2id(32);
 count:=0;
 ch:=readch();
 temp2:=nil;
 lex();
 if char='(m a t h) then
     res:=mathML()
   else errorML("<math>",2);
 lex();
 if char='(!/ m a t h) then
   terpri() 
   else errorML("</math>",19);

 return algebraic res;
end;

%The two next functions differ in that one of them parses from the next
%token onwards, and the other one from the actual token onwards.


symbolic procedure mathML();
begin scalar a;
 a:=nil;
 lex();
 return sub_math();
end;

symbolic procedure mathML2();
begin scalar a;
 a:=nil;
 return sub_math();
end;

%Parses all tokens which legally follow a mathml token.

symbolic procedure sub_math();
   begin scalar a,aa;
      if char='(a p p l y)
	then <<a := applyML();
	       if char neq '(!/ a p p l y) then errorML("</apply>",3)>>
       else if char='(v e c t o r)
	then <<a := vectorRD();
	       if char neq '(!/ v e c t o r)
		then errorML("</vector>",2)>>
       else if (aa := assoc(compress!* char, RDelems!*))
	then <<a := apply(cadr aa, '() );
	       if compress!* char neq third aa
		 then errorML(third cdr aa, 2)>>;
      return a
   end;

symbolic procedure compress!* u;
   begin scalar x;
      if digit car u then return compress u;
      for each j in u do
	 if j eq '!/ or j eq '!- or j eq '!; or j eq '!.
	    then x := j . '!! . x
	  else x := j . x;
      return intern compress reversip x
   end;


%The next two functions parse the <cn> and <ci> tokens and extracts its
%content to be used by the function calling it. It will have different
%behaviours according to the type of the <cn> data.

symbolic procedure cnML();
begin scalar type, sep, tt,aa;
%Must check that what is being returned is an int.
 type:=nil; sep:=nil;
 type:=search_att(atts, '(t y p e));
 lex();
 tt := char;
 lex();


 if type='(c o n s t a n t) then 
 <<  
   if (aa:=assoc(intern compress tt, RDci!*)) then 
     return apply(first cdr aa, rest cdr aa) >>;

 if IDP compress tt then errorML(compress tt, 16);

 if type=nil then return compress tt;
 if member(type, '((r e a l) (i n t e g e r))) neq nil then 
    return compress tt;
 if member(type, '((r a t i o n a l) (c o m p l e x !- c a r t e s i a n) 
                   (c o m p l e x !- p o l a r))) neq nil then
   << sep:=sepRD();
      if type='(r a t i o n a l) then <<lex();return alg_quotient(compress tt, sep)>>
      else
      if type='(c o m p l e x !- c a r t e s i a n) then 
        << lex();return comp2(compress tt, sep) >>else
      if type='(c o m p l e x !- p o l a r) then
        <<sep:= po2ca(compress tt, sep);
          <<lex();return  comp2(car sep, cadr sep)>> >>
   >>;
end;


symbolic procedure ciML();
begin scalar test, type,aa, tt;
 aa:=nil; type:=nil; test:=nil;
 type:=search_att(atts, '(t y p e));
 lex();
 tt := char;
 lex();
  << test:=compress tt; 
     if NUMBERP test then errorML(test, 4);
     test:=intern test;
     return test>>
end;

%returns the algebraic value of the constant values.

algebraic procedure consts(c);
begin;
 if c=i then return i;
 if c=d then return d;
 if c=e then return e;
 if c=p then return pi;
end;

%Constructs a complex number.

algebraic procedure comp2(a,b); 
begin;
 return a+b*i;
end;

%Returns the two values separated by a <sep/> tag.

symbolic procedure sepRD();
begin scalar p1, p2;
 p1:=nil; p2:=nil;
 if char neq '(s e p !/) then errorML("<sep/>",2);
 lex();
 p2:=compress char;
 return p2;
end; 

%Creates a vector by using function matrix_row.

symbolic procedure vectorRD();
begin scalar a;
 a:=nil;
 a:=matrixrowRD();
 a:=lisp aeval list('mat, a);
 return a;
end;

%The following functions construct the matrix from the mathml information.

symbolic procedure matrixRD();
begin scalar b1, b2, stop;
 stop:=0;
 b1:='();
 b2:=nil;
 while stop=0 do
 <<
   lex();
   if char='(m a t r i x r o w) then 
    <<b2:=matrixrowRD();
      if b1 neq nil then b1:=append(b1, list b2)
      else b1:=list b2;
      if char neq '(!/ m a t r i x r o w) then 
       errorML("</matrixrow>",2)>>
   else stop:=1
  >>; 
 return aeval cons ('mat ,b1);
end;

symbolic procedure matrixrowRD();
begin scalar a;
 a:=nil;
 a:=mathML();
 return if a=nil then nil
        else cons(a, matrixrowRD());
end;

%returns a lambda function constructed from the information supplied.

symbolic procedure lambdaRD();
begin scalar b1, b2;
 lex();
 b1:=bvarRD();
 b1:=car b1;
 b2:=mathML();
 lex();
 return algebraic( (lambda  b1; b2) b1 );
end;

%returns a set constructed from the information supplied.

symbolic procedure setRD();
begin scalar setvars;
 atts:='(t y p e != s e t !$);
 setvars:= cons('list,stats_getargs());
 setvars:=cons(car setvars, norepeat(cdr setvars));
 return setvars;
end;

%This function will keep one copy only of any repeating elements

symbolic procedure norepeat(args);
begin;
return if args=nil then nil else
 if length args=1 then list car args
 else append(list car args, norepeat(delall(car args, cdr args)));
end;

%This function will delete all occurences of element x in list l

symbolic procedure delall(x,l);
if l=nil then nil 
else if x=car l then delall(x, cdr l)
     else append(list car l ,delall(x, cdr l));

%returns a list constructed from the information supplied.

symbolic procedure listRD();
begin scalar setvars, lorder, tmp;
 lorder:=search_att(atts, '(o r d e r));
 atts:='(t y p e != l i s t !$);
 setvars:= cons('list,stats_getargs());
 tmp := setvars;
 if lorder='(l e x i c o g r a p h i c) then 
   setvars:=algebraic sortlist (setvars, lexog);
 if lorder='(n u m e r i c) then 
  setvars:=algebraic sortlist (setvars, numer) 
 else
   setvars:=algebraic sortlist (setvars, pred);
 if setvars = nil then setvars:= tmp;
 return setvars;
end;
 
%Defines the predicate function used by function _sortlist_. Sortlist comes
%from package assist, and its documentation can be found in assist's
%documentation

%This one will sort all elements in numerical and alphanumerical order

symbolic procedure pred(u,v);
begin;
return if NUMBERP u and NUMBERP v then <<if u<v then t>> else
 if IDP u and IDP v then <<if id2int(u) < id2int(v) then t>> 
 else if NUMBERP u and IDP v then <<if u<id2int(v) then t>> else
if IDP u and NUMBERP v then <<if id2int(u)<v then t>>;
end;

%This one sorts in alphanumerical order

symbolic procedure lexog(u,v);
begin;
 return if IDP u and IDP v then <<if id2int(u) < id2int(v) then t>> 
 else t;
end;

%This one sorts in numerical order

symbolic procedure numer(u,v);
begin;
 return if NUMBERP u and NUMBERP v then <<if u<v then t>> 
 else t;
end;

%Makes the next token in the inputstream an operator.

symbolic procedure fnRD();
begin scalar b1;
 lex();
 if char neq '(c i) then errorML(compress char,20)
 else b1:= mathML2();
 if ATOM b1 then algebraic operator b1;
 lex();
 return b1;
end;

%Reads the declare construct and sets the value of the given variable to
%the given value.

symbolic procedure declareRD();
begin scalar b1, b2, flagg, at;
 at:=atts;
 flagg := nil;
 b1:=mathML();
 clear b1;
 clear reval b1;
 lex();
 if at neq nil then 
   put(b1, 'type, search_att(at,'(t y p e)));

 if search_att(at, '(t y p e)) = '(v e c t o r) then 
   flagg:=t;

 if char='(!/ d e c l a r e) then return nil;
 b2 :=mathML2();
 if get(b1, 'type)='(f n) then 
  << algebraic operator b1>>;
 if flagg = t then setk(b1, b2)
 else algebraic set(b1, b2);
 lex();
 return nil;
end;

%This function will determine if the next token is a valid token following
%an apply token. It then calls the appropriate function if succesful.

symbolic procedure applyML();
   begin scalar aa;
      lex();
      if (aa := assoc(compress!* char, RDlist!*))
	then return apply(first cdr aa, rest cdr aa)
       else if char='(i d e n t !/) or char='(c o m p o s e !/)
	then return nil
       else if char='(i n v e r s e !/) then return t
       else errorML(compress!* char, 17)
   end;

%Reads the next two elements and returns their setdifference.

symbolic procedure setdiffRD();
begin scalar b1, b2;
 b1:=mathML();
 b2:=mathML();
 lex();
 if b1=reval b1 and b2=reval b2 then return list('setdiff,b1, b2)
else
 if b1=reval b1 then return list('setdiff, b1, reval b2) else
 if b2=reval b2 then return list('setdiff, reval b1, b2) else
 return append(list('set), setdiff(reval b1, reval b2));
end;

%Reads through a select construct and acts accordingly.

symbolic procedure selectRD();
begin scalar a1, res;
 a1:=stats_getargs();
 if caar a1='mat then res:=mat_select(a1); 
 if caar a1='list then res:=list_select(a1);
 if ATOM res then return res;
 return cons('list, res);
end;

symbolic procedure mat_select(a1);
begin
 if length car a1=2 then return nth(cadar a1, cadr a1)
 else
 if length a1=2 then return nth(cdar a1, cadr a1);
 if length a1=3 then return nth(nth(cdar a1, caddr a1), cadr a1);
end;  

symbolic procedure list_select(a1);
begin scalar b1;
 b1:=cdar a1;
 return nth(b1, cadr a1);
end;  


%Returns the transpose of the element contained in the transpose tags.

symbolic procedure transposeRD();
begin scalar a, res;
 a:=mathML();
 res:=algebraic(tp a);
 lex();
 return res;
end;

%Returns the determinant of the given element.

symbolic procedure determinantRD();
begin scalar a, res;
 a:=mathML();
   res:=alg_det a;
 lex();
 return res;
end;

algebraic procedure alg_det(a);
begin;
return det a;
end;

%Takes the given function name, makes it an operator, and then
%applies it to the arguments specified in the mathml input.

symbolic procedure applyfnRD();
begin scalar b1, b2, c1;
 b1:=nil; b2:=nil; c1:=nil;
 b1:=fnRD();
 b2:=stats_getargs();
 b2:=cons(b1, b2);
 c1:=algebraic b2;
 return  c1;
end;

%Returns the union of the elements specified.

symbolic procedure unionRD();
begin scalar b1, a1, a2,type,res;
 b1:=stats_getargs();
 a1:=car b1;
 a2:=cadr b1;
 if PAIRP a1 AND PAIRP a2 then <<
   type := car a1;
   a1:=cons('list, eval_list cdr a1);
   a2:=cons('list, eval_list cdr a2);
   res:=algebraic union(a1,a2);
 >>
 else <<
  type := 'list;
  res := cons('list,cons(a1,list a2));
 >>;
 return cons(type, cdr res);
end;

%Returns the intersection of the elements specified.

symbolic procedure intersectionRD();
begin scalar b1, a1, a2,type,res;
 b1:=stats_getargs();
 a1:=car b1;
 a2:=cadr b1;
 if PAIRP a1 AND PAIRP a2 then <<
   type := car a1;
   a1:=cons('list, eval_list cdr a1);
   a2:=cons('list, eval_list cdr a2);
   res:=algebraic intersect(a1,a2);
 >>
 else <<
  type := 'list;
  res := cons('list,cons(a1,list a2));
 >>;
 return cons(type, cdr res);
end;


%Takes all the arguments in a list, and forces an evaluation on them if they can be
%evaluated.

symbolic procedure eval_list(args);
begin;
 return if args=nil then nil
 else cons(reval car args, eval_list(cdr args));
end;

%Takes all the arguments in a list of sets, and evaluates them if they can
%be evaluated.

symbolic procedure eval_list_sets(args);
begin scalar ab;
 return if args=nil then nil
 else <<if PAIRP reval car args then 
    	<<
	  if car reval car args='list then 
             ab:=cons('set, cdr reval car args)>>
        else ab:=reval car args; 
        cons(ab, eval_list_sets(cdr args))>>;
end;

%Sets global variable temp2 to 'stop if an evaluatable element is found in
%list args.

symbolic procedure constants(args);
begin scalar b1;
if args neq nil then b1:=car args;
 return if args=nil then nil
   else <<if b1=reval b1 AND IDP b1 OR PAIRP b1 then temp2:='stop
          else  constants(cdr args)>>; 
end;



%Return boolean values of the arguments given.

symbolic procedure notRD();
begin scalar a;
 a:=mathML();
 lex();
 return not(reval a);
end;

symbolic procedure impliesRD();
begin scalar a1,b1,c1;
 a1:=mathML();
 b1:=mathML();
 if b1='false then b1:=nil;
 if a1='false then a1:=nil;
 if reval a1 AND not reval b1 then c1:=nil 
 else c1:=t;
 lex();
 return c1;
end; 

symbolic procedure andRD();
begin scalar a;
 a:=stats_getargs();
 a:=subst(nil, 'false, a);
 a:=and2RD(a);
 return a;
end;

symbolic procedure and2RD(args);
begin
 return if length args=1 then reval car args
    	else and(reval car args, and2RD(cdr args));

end;

symbolic procedure orRD();
begin scalar a;
 a:=stats_getargs();
 a:=subst(nil, 'false, a);
 a:=or2RD(a);
 return a;
end;

symbolic procedure or2RD(args);
begin
 return if length args=1 then reval car args
    	else or(reval car args, or2RD(cdr args));

end;

symbolic procedure xorRD();
begin scalar a;
 a:=stats_getargs();
 a:=subst(nil, 'false, a);
 a:=xor2RD(a);
 return a;
end;

symbolic procedure xor2RD(args);
begin
 return if args=() then nil
    	else alg_xor(reval car args, xor2RD(cdr args));

end;


symbolic procedure alg_xor(a,b);
begin;
 return and(or(a,b),not(and(a,b)));
end;

%All defined trigonometric functions.

algebraic procedure sinRD();
begin scalar a;
 a:=symbolic mathML();
 symbolic lex();
 return sin(a);
end;

algebraic procedure secRD();
begin scalar a;
 a:=symbolic mathML();
 symbolic lex();
 return sec(a);
end;

algebraic procedure sinhRD();
begin scalar a;
 a:=symbolic mathML();
 symbolic lex();
 return sinh(a);
end;

algebraic procedure sechRD();
begin scalar a;
 a:=symbolic mathML();
 symbolic lex();
 return sech(a);
end;

algebraic procedure arcsinRD();
begin scalar a;
 a:=symbolic mathML();
 symbolic lex();
 return asin(a);
end;

algebraic procedure cosRD();
begin scalar a;
 a:=symbolic mathML();
 symbolic lex();
 return cos(a);
end;

algebraic procedure cscRD();
begin scalar a;
 a:=symbolic mathML();
 symbolic lex();
 return csc(a);
end;

algebraic procedure coshRD();
begin scalar a;
 a:=symbolic mathML();
 symbolic lex();
 return cosh(a);
end;

algebraic procedure cschRD();
begin scalar a;
 a:=symbolic mathML();
 symbolic lex();
 return csch(a);
end;

algebraic procedure arccosRD();
begin scalar a;
 a:=symbolic mathML();
 symbolic lex();
 return acos(a);
end;

algebraic procedure tanRD();
begin scalar a;
 a:=symbolic mathML();
 symbolic lex();
 return tan(a);
end;

algebraic procedure cotRD();
begin scalar a;
 a:=symbolic mathML();
 symbolic lex();
 return cot(a);
end;

algebraic procedure tanhRD();
begin scalar a;
 a:=symbolic mathML();
 symbolic lex();
 return tanh(a);
end;

algebraic procedure cothRD();
begin scalar a;
 a:=symbolic mathML();
 symbolic lex();
 return coth(a);
end;

algebraic procedure arctanRD();
begin scalar a;
 a:=symbolic mathML();
 symbolic lex();
 return atan(a);
end;

%Reads the condition tag.

symbolic procedure conditionRD();
begin scalar a;
 lex();
 if char='(r e l n) then a:=relnRD()
 else a:=mathML();
 lex();
 return a;
end;

%This function will read all legal tags following the <reln> tag.

symbolic procedure relnRD();
   begin scalar a,aa;
      lex();
      if (aa := assoc(compress!* char, RDreln!*))
	then a := apply(first cdr aa, rest cdr aa)
       else errorML(compress!* char, 18);
      return if a=t then t else if null a then 'false else a;
   end;


symbolic procedure relationRD( type );
begin scalar args,a;
 args:=stats_getargs();
 if type='(quote eq) then <<a:= 'equal . args>> else
 %if type='(quote eq) then <<a:= alg_eq(args)>> else
 %if type='(quote neq) then <<a:= alg_neq(args)>> else
 %if type='(quote lt) then <<a:= alg_lt(args)>> else
 %if type='(quote gt) then <<a:= alg_gt(args)>> else
 if type='(quote lt) then <<a:= 'lessp . args>> else
 if type='(quote gt) then <<a:= 'greaterp . args>> else

 if type='(quote subset) then <<a:=subsetRD(args)>> else
 if type='(quote prsubset) then <<a:=prsubsetRD(args)>> else
 %if type='(quote geq) then <<a:= alg_geq(args)>> else
 %if type='(quote leq) then <<a:= alg_leq(args)>>;
 if type='(quote geq) then a:= 'geq . args else
 if type='(quote leq) then a:= 'leq . args;

 return if a=t then t 
        else if a=nil then 'false else a;
end;

%The following functions do all the necessay actions in order to evaluate
%what should be by the tags.

symbolic procedure notsubsetRD();
begin scalar b1, b2;
 b1:=mathML();
 b2:=mathML();
 lex();
 if b1=reval b1 AND b2=reval b2 then 
    return list('notsubset, b1, b2);
 if b1= reval b1 then 
    return list('notsubset, b1,cons ('set, cdr reval b2));
 if b2= reval b2 then 
    return list('notsubset, cons('set,cdr reval b1), b2);
 if intersection(cdr reval b1,cdr reval b2)=nil then 
    return t 
 else
    return nil; 
end; 

symbolic procedure notprsubsetRD();
begin scalar b1, b2;
 b1:=mathML();
 b2:=mathML();
 lex();
 if b1=reval b1 AND b2=reval b2 then 
    return list('notprsubset, b1, b2);
 if b1= reval b1 then 
    return list('notprsubset, b1,cons('set, cdr reval b2));
 if b2= reval b2 then 
    return list('notprsubset, cons('set,cdr reval b1), b2);
 if reval b1 = reval b2 then return t;
 if intersection(cdr reval b1,cdr reval b2)=nil then return t else
return nil; 
end;


symbolic procedure subsetRD(sets);
begin scalar args,val;
 args:=sets;
 val:=t;
 while (length args > 1) do 
  << if NUMBERP reval car args then 
       errorML(reval car args,5);
     if car args = reval car args OR cadr args = reval cadr args then
     << args:='();
	val:=cons('subset, eval_list_sets(sets))>>
     else
     << val:=AND(val, alg_subset(reval car args, reval cadr args));
	args:=cdr args >> 
  >>;
 return val;
end;



symbolic procedure alg_subset(a,b);
begin;
  if a=b then return t
  else
  if setdiff(a,b)=nil then return t else return nil;
end;


symbolic procedure prsubsetRD(sets);
begin scalar args, val;
 val:=t;
 while (length args > 1) do 
  << if car args = reval car args OR cadr args = reval cadr args then
     << args:='();
	val:=cons('prsubset, eval_list_sets(sets))>>
     else
     << val:=AND(val, alg_prsubset(reval car args, reval cadr args));
	args:=cdr args >> >>;
 return val;
end;

symbolic procedure alg_prsubset(a,b);
begin;
  if setdiff(a,b)=nil then return t else return nil;
end;

symbolic procedure inRD();
begin scalar b1,b2;
 b1:= mathML();
 b2:= mathML();
 lex();
 if b2 = reval b2 AND ATOM b2 then
 << 
    if b2='n then <<if FIXP b1 then return t else return nil>>;
    if b2='r then <<if NUMBERP b1 then return t else return nil>>;
    return list('in, reval b1, b2)
 >>;
 if MEMBER(reval b1,reval  b2) neq nil then return t
   else return nil;
end;

symbolic procedure notinRD();
begin scalar b1,b2;
 b1:= mathML();
 b2:= mathML();
 lex();
 if b2 = reval b2 AND ATOM b2 then
 << 
    if b2='N then if FIXP b1 then return nil else return nil;
    if b2='R then if NUMBERP b1 then return nil else return nil;
    return list('notin, reval b1, b2)>>;
 if MEMBER(reval b1,reval  b2) neq nil then return nil
   else return t;
end;

symbolic procedure alg_eq(args);
begin;
 constants(args);
 return alg_eq2 eval_list args;

end;

symbolic procedure alg_eq2(args);
begin;
 return if length args=1 then t
        else if (reval car args eq reval cadr args) then
		alg_eq2(cdr args);
end;

symbolic procedure alg_neq(args);
begin;
 constants(args);
 return alg_neq2(eval_list(args));
end;

symbolic procedure alg_neq2(args);
begin;
 return if length args=1 then t
        else if (reval car args neq reval cadr args) then
		alg_neq2(cdr args);
end;

symbolic procedure alg_lt(args);
begin;
 constants(args);
 if temp2='stop then 
 <<temp2:=nil; return append(list 'lt, eval_list(args))>>
 else return alg_lt2(eval_list(args));
end;

symbolic procedure alg_lt2(args);
begin;
 return if length args=1 then t
        else 
 if (NUMBERP reval car args AND NUMBERP reval cadr args )then 
   <<if (reval car args < reval cadr args) then 
       alg_lt2(cdr args)
     else nil>>
 else errorML("",6);
end;



symbolic procedure alg_gt(args);
begin;
 constants(args);
 if temp2='stop then 
 <<temp2:=nil; return append(list 'gt, eval_list(args))>>
 else return alg_gt2(eval_list(args));
end;

symbolic procedure alg_gt2(args);
begin;
 return if length args=1 then t
        else 
 if (NUMBERP reval car args AND NUMBERP reval cadr args )then 
   <<if (reval car args > reval cadr args) then 
       alg_gt2(cdr args)
     else nil>>
 else errorML("",6);
end;

symbolic procedure alg_geq(args);
begin;
 constants(args);
 if temp2='stop then 
 <<temp2:=nil; return append(list 'g_eq, eval_list(args))>>
 else return alg_geq2(eval_list(args));
end;

symbolic procedure alg_geq2(args);
begin;
 return if length args=1 then t
        else 
 if (NUMBERP reval car args AND NUMBERP reval cadr args )then 
   <<if (reval car args >= reval cadr args) then 
       alg_geq2(cdr args)
     else nil>>
 else errorML("",6);
end;

symbolic procedure alg_leq(args);
begin;
 constants(args);
 if temp2='stop then 
 <<temp2:=nil; return append(list 'l_eq, eval_list(args))>>
 else return alg_leq2(eval_list(args));
end;

symbolic procedure alg_leq2(args);
begin;
 return if length args=1 then t
        else 
 if (NUMBERP reval car args AND NUMBERP reval cadr args )then 
   <<if (reval car args <= reval cadr args) then 
       alg_leq2(cdr args)
     else nil>>
 else errorML("",6);
end;

%Interprets the <tendsto> tag when used in the <limit> tag.

symbolic procedure tendstoRD();
begin scalar attr, arg1 ,arg2;
 if intersection(atts, '(t y p e)) neq nil then 
    attr:=search_att(atts, '(t y p e))
 else attr:=nil;
 arg1:=mathML();
 arg2:=mathML();
 lex();
 return list (attr,arg2);
end;
    
%Returns the limit of the information given. Uses the Reduce package
%LIMITS.

symbolic procedure limitRD();
begin scalar var, condi, low, exp;
 lex();
 if char='(b v a r) then
  << var:=bvarRD();
     if eqn(cadr var,1) then var:=car var
      else 
	 errorML("<degree>",8);
     lex()>>
 else var:=nil;

 if char='(l o w l i m i t) then
  << low:=lowlimitRD();
     lex()>>
 else if char='(c o n d i t i o n) then 
     <<	condi:=conditionRD();
        if char neq '(!/ c o n d i t i o n) then 
	errorML("</condition>",2);
        lex()>>
      else condi:=nil;

 exp:=mathML2();
 lex();

 if condi=nil then 
   return alg_limit(exp, var, low, 'norm);

 if low=nil then
   if car condi='(a b o v e) then 
        return alg_limit(exp, var, cadr condi, 'plus)
   else return alg_limit(exp, var, cadr condi, 'min);

end; 

algebraic procedure alg_limit(exp, var, tendto, type);
begin;
 if type='norm then return limit(exp, var, tendto);
 if type='plus then return limit!+(exp,var,tendto);
 if type='min then return limit!-(exp,var,tendto);
end;
 
%Returns the sum.
 
symbolic procedure sumRD();
begin scalar svar, low, upper, express, res;
 svar:=nil; low:=nil; upper:=nil; express:=nil; res:=nil;
 lex();
 if char='(b v a r) then 
      <<svar:=bvarRD(); 
	if eqn(cadr svar,1) then svar:=car svar
        else 
	 errorML("<degree>",7);
        lex()>>
 else errorML("<bvar>",9);

 if char='(l o w l i m i t) then
     << low:=lowlimitRD();
        lex();
  	if char='(u p l i m i t) then 
             <<	upper:=upperlimitRD();
        	lex()>>
	else errorML("<uplimit>",10) >>
 else if char='(i n t e r v a l) then
     <<	res:=intervalRD();
	lex();
	low:=car res;
	upper:=cadr res >>
      else errorML("<lowlimit> or <interval>",11);

 express:=mathML2();
 lex();

 return algebraic sum(express, svar, low, upper);

end;

algebraic procedure alg_sum( low, upper, formu);
begin scalar temp,var2;
 algebraic;
 temp:=0;
 var2:=symbolic svar;
 for tt:=low:upper do 
  << set(var2,tt);
     temp:=temp+formu;
     clear symbolic svar;
     var2:=symbolic svar>>;
 symbolic;    
 return temp;
end;


%Returns the product.

symbolic procedure productRD();
begin scalar pvar, low, upper, pexpress, res;
 lex();
 if char='(b v a r) then 
      <<pvar:=bvarRD(); 
	if eqn(cadr pvar,1) then pvar:=car pvar
        else 
	 errorML("<degree>",12);
        lex()>>
 else errorML("<bvar>",9);
 if char='(l o w l i m i t) then
     << low:=lowlimitRD();
        lex();
  	if char='(u p l i m i t) then 
             <<	upper:=upperlimitRD();
        	lex()>>
	else errorML("<uplimit>",10)>>
 else if char='(i n t e r v a l) then
     <<	res:=intervalRD();
	lex();
	low:=car res;
	upper:=cadr res >>
      else errorML("<lowlimit> or <interval>",11);

 pexpress:=mathML2();
 lex();

 return algebraic prod(pexpress, pvar, low, upper);


end;



algebraic procedure alg_prod( low, upper, formu);
begin scalar temp,var2;
 algebraic;
 temp:=1;
 var2:=symbolic pvar;
 for tt:=low:upper do 
  << set(var2,tt);
     temp:=temp*formu;
     clear symbolic pvar;
     var2:=symbolic pvar>>;
 symbolic;    
 return temp;
end;

%Returns the partial derivative.

symbolic procedure partialdiffRD();
begin scalar res, bvar, express;
 lex();
 bvar:=getargsRD();
 express:=mathML2();
 lex();
 res:=differentiate(express, bvar);
 return res;
end;
 
symbolic procedure differentiate(express, bvar);
begin scalar temp,diffed;
return 
  if eqn(length bvar,0) then express 
   else
    <<temp:=car bvar;
      diffed:=alg_df(express, car temp, cadr temp);
      differentiate(diffed, cdr bvar)>>;
end;


%This function reads through the a series of <bvar> tags and extracts the
%variables.

symbolic procedure getargsRD();
begin scalar a;

%Dont forget. This function leaves the file pointer on 
%the next token after the last bvar. So you need to use mathML2 after.

if char='(b v a r) then 
<<a:=bvarRD();
  lex();
  return cons (a,getargsRD())>>;
end; 

%Returns the derivative.

symbolic procedure diffRD();
begin scalar bvar, degree, express, res;
 lex();
 if char='(b v a r) then 
  <<bvar:=bvarRD(); 
    degree:=cadr bvar; 
    bvar:=car bvar; lex()>>
 else <<bvar:=nil; degree:=nil>>;
 express:=mathML2();
 lex();
 res:=alg_df(express, bvar, degree);
 return res;
end;

algebraic procedure alg_df(a,b,c);
begin;
 return df(a,b,c);
end;

%This function will calculate the integral. Takes in the expression, then
%the bound variable, and finally the limits if they exist.

symbolic procedure intRD();
begin scalar bvar, low, upper, int, exp;
 lex();
 if char='(b v a r) then 
      <<bvar:=bvarRD(); 
	if eqn(cadr bvar,1) then bvar:=car bvar
        else 
	 errorML("",13);
        lex()>>
   else errorML("<bvar>",14);


 if char='(l o w l i m i t) then <<low:=lowlimitRD(); lex()>>
   else low:=nil;

 if char='(u p l i m i t) then <<upper:=upperlimitRD(); lex()>>
   else upper:=nil;

 if char='(i n t e r v a l) then 
   <<int:=intervalRD(); 
     low:=car int;
     upper:=cadr int;
     lex()>>
   else int:=nil;

 
 exp:=mathML2();
 lex();
 return alg_int(exp, bvar, low, upper);
end;

algebraic procedure alg_int(exp, bvar, low, upper);
begin scalar res;
 if (low='nil) AND (upper=nil) then res:= int(exp, bvar)
  else res:= int(exp,bvar,low,upper);
return res;
end;

%Here we parse bound variables. The function reads the variable as well as
%the degree if there is one.

symbolic procedure bvarRD();
begin scalar var, deg;
 lex();
 if char='(d e g r e e) then 
     errorML("<bvar>",15);
 var:=mathML2();
 lex();
 if char='(d e g r e e) then 
   << deg:=mathML();
      lex();
      if char neq '(!/ d e g r e e) then 
	error("</degree>",2);
      lex()>>
 else deg:=1;
 if char='(!/ b v a r) then return list(var, deg)
   else errorML("</bvar>", 2);
end;

%Functions used to parse the limits of an integral, sum, or product.

symbolic procedure lowlimitRD();
begin scalar lowlimit;
 lowlimit:=mathML();
 lex();
 if char='(!/ l o w l i m i t) then return lowlimit
   else errorML("</lowlimit>", 2);
end;

symbolic procedure upperlimitRD();
begin scalar upperlimit;
 upperlimit:=mathML();
 lex();
 if char='(!/ u p l i m i t) then return upperlimit 
   else errorML("</uplimit>", 2);
end;


symbolic procedure intervalRD();
begin scalar l,u;
 l:=mathML();
 u:=mathML();
 lex();
 if char='(!/ i n t e r v a l) then return list(l,u) 
   else errorML("</interval>", 2);
end;

%Following functions just evaluate calculus functions. 

symbolic procedure lnRD();
begin scalar a;
 a:=alg_ln(mathML());
 lex();
 return a;
end;

algebraic procedure alg_ln(a);
begin;
  return ln(a);
end;

symbolic procedure logRD();
begin scalar a, a1, base;
 base:=nil;
 lex();
 if char='(l o g b a s e) then 
    <<base:=logbaseRD();
      lex()>>;
  a1:=mathML2();
  lex();
  a:=alg_log(a1, base);
  return a;
end;

algebraic procedure alg_log(a, base);
begin;
 if base=nil then return log(a)
 else
  return logb(a, base);
end;

symbolic procedure logbaseRD();
begin scalar a;
 a:=mathML();
 lex();
 if char='(!/ l o g b a s e) then return a
   else errorML("</logbase>",2);
end;


symbolic procedure conjugateRD();
begin scalar a;
  a:= alg_conj(mathML());
  lex();
  return a;
end;

algebraic procedure alg_conj(a);
begin;
 return conj(a);
end;


symbolic procedure minusRD();
begin scalar c,b;
  c:=mathML();
  b:=mathML();
  if b=nil then c:=alg_minus(c)
   else <<
	c:=alg_difference(c,b); 
	lex()>>;
  return c;
end;

algebraic procedure alg_minus(a);
begin;
 return -a;
end;

algebraic procedure alg_difference(a,b);
begin;
 return difference(a,b);
end;


symbolic procedure absRD();
begin scalar a;
  a:=alg_abs(mathML());
  lex();
  return a;
end;

algebraic procedure alg_abs(a);
begin;
 return abs(a);
end;

symbolic procedure rootRD();
begin scalar b,deg;
  lex();
  if char='(d e g r e e) then 
  << deg:=mathML();
     lex();
     if char neq '(!/ d e g r e e) then 
       error("</degree>","Syntax ERROR: Missing end tag");
     lex()>>
  else deg:=2;

  b:=mathML2();
  lex();
  return alg_root(b,deg);
end;

algebraic procedure alg_root(b,a);
begin;
return b**(1/a);
end;


symbolic procedure remRD();
begin scalar a, a1, a2;
  a1:=mathml();
  a2:=mathml();
  a:=alg_remainder(a1, a2);
  lex();
  return a;
end;

algebraic procedure alg_remainder(a,b);
begin;
  return remainder(a,b);
end;

symbolic procedure factorialRD();
begin scalar a;
  a:=alg_factorial(mathML());
  lex();
  return a;
end;  

algebraic procedure alg_factorial(a);
begin;
  return factorial(a);
end;

symbolic procedure expRD();
begin scalar a;
  a:= alg_exp(mathML());
  lex();
  return a;
end;

algebraic procedure alg_exp(a);
begin;
  return exp(a);
end;

symbolic procedure quotientRD();
begin scalar a, a1, a2;
  a1:=mathML();
  a2:=mathML();
  if IDP reval a1 OR IDP reval a2 then a:=alg_quotient(a1,a2)
  else
  a:= (reval a1)/(reval a2);
  lex();
  return a;
end;

algebraic procedure alg_quotient(a,b);
begin;
  return a/b;
end;

symbolic procedure divideRD();
begin scalar a, a1, a2;
  a1:=mathML();
  a2:=mathML();
  if a2 = 0 then errorML("", 21);
  a:=alg_divide(a1,a2);
  lex();
  return a;
end;

algebraic procedure alg_divide(a,b);
begin;
  return quotient(a,b);
end;

symbolic procedure gcdRD();
begin scalar c1;
 c1:=stats_getargs();
 constants(c1);
 if temp2='stop then 
   << temp2:=nil;
      return cons('gcd, eval_list(c1))>>
 else return gcdRD2(c1);
end;

symbolic procedure gcdRD2(args);
begin scalar a;
a:=reval car args;
return if length args=1 then  car args
	else alg_gcd2(a, gcdRD2(cdr args));
end;

algebraic procedure alg_gcd2(a , b);
begin;
return gcd(a,b);
end;

symbolic procedure minRD();
begin scalar a;
a:=mathML();
return if a=nil then nil
         else alg_min(a,minRD());
end;

algebraic procedure alg_min(a,b);
begin;
 return min(b,a);
end;

symbolic procedure maxRD();
begin scalar a;
a:=mathML();
return if a=nil then nil
         else alg_max(a,maxRD());
end;

algebraic procedure alg_max(a,b);
begin;
  return max(a,b)
end;
    
lisp operator plusRD;

symbolic procedure plusRD();
begin scalar abc1;
abc1:=nil;
abc1:=mathML();
return if abc1 = nil then 0
	else alg_plus(abc1, plusRD());
end;

algebraic procedure alg_plus(acb1,b);
begin;
return acb1+b;
end;


symbolic procedure timesRD();
begin scalar a;
a:=nil;
a:=mathML();
return if a=nil then 1
  else alg_times(a, timesRD());
end;

algebraic procedure alg_times(a,b);
begin;

if b=i then return a*i;
return a*b;
end;



symbolic procedure powerRD();
begin scalar var,power;
 var:=mathML();
 power:=mathML(); 
 lex();
 return alg_expt(var,power);
end;

algebraic procedure alg_expt(a,b);
begin;
return expt(a,b);
end;

%The following function is in charge of providing the correct error message
%as well as closing the input/output stream, and exiting the program
%correctly. 
   
symbolic procedure errorML( str, msg );
begin;
 terpri();
 princ "***** Error in token number ";
 princ count;
 princ " (<";
 princ compress char;
 princ ">)";
 terpri();
 if msg=1 then 
  << princ "Needed attribute";
     princ str;
     princ " and none was found.">> else
 if msg=2 then 
  << princ "Missing tag: ";
     princ str >> else
 if msg=3 then 
  << princ "Undefined error!";
     princ " Token number "; princ sub1 count;
     princ " probably mispelled or an";
     princ "ambiguous or erroneous use of <apply></apply>.">> else
 if msg=4 then 
  << princ "Numerical constant ";
     princ str;
     princ " was enclosed between <ci></ci> tags.";
     terpri();
     princ "Correct syntax: <cn>";
     princ str;
     princ "</cn>.">> else
 if msg=5 then 
  << princ "All arguments must be sets";
     terpri();
     princ str;
     princ " does not represent a set.">> else
 if msg=6 then 
  << princ "Non-numeric argument in arithmetic.">> else
 if msg=7 then 
  << princ "The degree quantifier is of no use in the sumation";
     princ "operator.">> else
 if msg=8 then 
  << princ "The degree quantifier is of no use in the limit";
     princ " operator.">> else
 if msg=9 then 
  << princ "The index of sumation has not been specified.";
     terpri();
     princ "Please use <bvar></bvar> tags to specify an index.">>
 else
 if msg=10 then 
  << princ "Upperlimit not specified.">> else
 if msg=11 then 
  << princ "Upper and lower limits have not been specified.">> else
 if msg=12 then 
  << princ "The degree quantifier is of no use in the product";
     princ " operator.">> else
 if msg=13 then 
  << princ "The degree quantifier is not allowed in the integral";
     princ " operator.">> else
 if msg=14 then
  << princ "Variable of integration not specified.";
     princ "Please use <bvar></bvar> tags to specify variable.">>
 else
 if msg=15 then 
  << princ "Incorrect use of <bvar></bvar> tags.";
     princ " Correct use:";
     terpri(); 
     princ
"<bvar> bound_var </bvar> [<degree> degree </degree>] </bvar>">> else
 if msg=16 then
  << princ "Symbolic constant ";
     princ str;
     princ " was enclosed between <cn></cn> tags.";
     terpri();
     princ "Correct syntax: <ci> ";
     princ str;
     princ " </ci>";
     terpri();
     princ "or <cn type=""constant""> </cn>";
     princ "if using constants &ImaginaryI;, &ii;, &ExponentialE;, &ee; or &pi;."
  >> else
 if msg=17 then 
  << princ "Unknown tag: <";
     princ str;princ ">.";
     terpri();
     princ "Token not allowed within <apply></apply> tags.";  
     terpri();
     princ "Might be: <"; princ str; princ "/>.">> else
 if msg=18 then 
  << princ "Unknown tag: <";
     princ str;princ ">.";
     terpri();
     princ "Not allowed within <reln></reln> tags.">> else
 if msg=19 then 
  << princ "Undefined error!";
     princ " Token "; princ sub1 count;
     princ " is probably mispelled";
     terpri();
     princ "or unknown, ";
     princ "or the </math> tag is missing">> else
 if msg=20 then
  << princ "Function ";
     princ str;
     princ "()";
     princ " was not enclosed in <ci></ci> tags.";
     terpri();
     princ "Correct syntax: <fn><ci>";
     princ str;
     princ "</ci></fn>.">> else  
 if msg=21 then 
  << princ "Error, division by 0">>;
  
 
 terpri();
 if FILE!*=t then close rds f;
 FILE!*:=nil;
 rederr("");
 rederr("");
 terpri();
end;

%Following function are in charge of parsing statistics related mathml.

symbolic procedure meanRD();
begin scalar b, size, args;
 args:=stats_getargs();
 b:=0;
 size:=length( args );
    while (args neq ()) do
	<< b:=alg_plus(b, car args);
	   args:= cdr args >>;
 return alg_quotient(b,size);
end;

symbolic procedure sdevRD(  );
begin scalar args,mean,b,size;
 args:=stats_getargs();
 mean:=alg_mean( args );
 size:=length(args);
 while(args neq ()) do
   << b:=alg_plus(b, alg_expt(alg_difference(car args, mean),2));
      args:=cdr args; >>;
 return b;
end;

symbolic procedure varRD( );
begin scalar args;
 args:=stats_getargs();
 return alg_expt(sdev( args ), 2);
end;

symbolic procedure medianRD( );
begin scalar args, siz, si;
 args:=stats_getargs();
 args:=cons('list, args);
 args:=sortl(args);
 args:=cdr args;
 si:=length args;
 siz:=si/2;
 if remainder(si,2)=0 then 
return alg_quotient(alg_plus(nth(args,siz),nth(args,(siz+1))),2)
 else return nth(args, siz);
end;

algebraic procedure sortl(args);
begin scalar rr;
 rr:=sortlist(args, pred);
 if rr=nil then return sortnumlist(args)
 else return rr;
end;

symbolic procedure momentRD( );
begin scalar args,size,d,i;
 args:=stats_getargs();
if char='(d e g r e e) then 
 <<i:=mathML();
   lex();
   if char='(!/ d e g r e e) then lex()
   else errorML("</degree>",2)>>
else i:=1;
 d:=();
 size:=length args;
 while args neq () do 
  << d:=cons(alg_expt(car args, i),d);
     args:=cdr args>>;
 return alg_mean(d);
end;

symbolic procedure alg_mean ( args );
begin scalar b, size, args;
 b:=0;
 size:=length( args );
    while (args neq ()) do
	<< b:=alg_plus(b, car args);
	   args:= cdr args >>;
 return alg_quotient(b,size);
end;

symbolic procedure sdev( args );
begin scalar mean,b,size;
 mean:=alg_mean( args );
 size:=length(args);
 while(args neq ()) do
   << b:=alg_plus(b, alg_expt(alg_difference(car args, mean),2));
      args:=cdr args; >>;
 return b;
end;

%The following function gets all arguments from the mathml input. 

symbolic procedure stats_getargs();
begin scalar ww;
  ww:=nil;
  ww:=mathML();
  if ww neq nil then <<
  return cons (ww,stats_getargs())>>;
end; 

%Transforms polar-complex to cartesian-complex.

symbolic procedure po2ca(r,p);
begin scalar theta,x,y;
      theta:=rad p;
      x:=r*cos(theta);
      y:=r*sin(theta);
      return(list(x,y))
end;

symbolic procedure rad(mu);        %note approx. pi
begin scalar b;
      b:=mu*3.141529/180;
      return b
end;

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Here start the functions in charge of pasing reduce's output and printing%
%it out in mathml.							  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%This the mathml printer which reads reduce output and translates it to
%mathml.

symbolic procedure math_ml_printer (mode,u);
<< 
if !*both=t then 
(<< if u=t then else maprin(u); terpri!* nil>>) where outputhandler!* := nil;
if mode neq 'terpri then
  << % FLUID '(indent, flagg,found_int, found_compl, consts_compl, consts_int);
     % FLUID '(found_mat_int, found_mat_compl, consts_mat_int, consts_mat_compl);
     found_mat_int=0$;
     found_mat_compl=0$;
     indent:=0$
     consts_compl:=()$
     consts_mat_compl:=()$
     consts_int:=()$
     consts_mat_int:=()$
     found_int:=0$
     found_compl:=0$
     flagg:=0$
     if (PAIRP u) then <<
        if !*web=t then printout("<EMBED TYPE=""text/mathml"" MMLDATA=""");
        printout("<math>");
 	indent:=3;

        if ((car u)='setq) then 
          <<if (PAIRP caddr u) then 
	      if (issq(caddr u)=1) then arbitrary_c( PREPSQ cadr caddr u ) 
		 else
	            if (caaddr u='mat) then arbitrary_c(caddr u) 
		    else  
	              if (caaddr u='list) then arbitrary_c( !*a2k caddr u);
	     setqML( u )>>
	else 
           if ((car u)='list) then 
	     << arbitrary_c( !*a2k u );    
	  	listML(cdr u)>>
	   else 
    	      if ((car u)='mat) then 
	        << arbitrary_c( u );
	  	   matrixML(cdr u)>>
	      else
    	         if ((car u)='!*sq) then 
  	 	   << arbitrary_c(PREPSQ (cadr u));
         	      expression(PREPSQ (cadr u))>>
	         else expression(u); 

             indent:=indent-3;
	     close_forall();
	     indent:=0;
	     printout( "</math>" );
             if !*web=t then princ(""" HEIGHT=300 WIDTH=500>");
             terpri() 
	>> 
     else 
	if (ATOM u) then << 
           if !*web=t then printout("<EMBED TYPE=""text/mathml"" MMLDATA="" ");
           printout( "<math>" );
           indent:=3; 
           expression( u );
	   indent:=0;
           printout( "</math>" );
           if !*web=t then princ(" "" HEIGHT=300 WIDTH=500>");
           terpri() >>
  else ; >> >>;
      

%Prints out vectors.

symbolic procedure vectorML( elem );
begin;
   printout("<vector>");
   indent:=indent+3;
   multi_elem(car elem);
   indent:=indent-3;
   printout("</vector>")
end;

%Following functions print out matrices.

symbolic procedure matrixML( elem );
begin;
  if length elem=1 then vectorML( elem )
  else 
  << printout("<matrix>");
     indent:=indent+3;
     matrix_rows(elem);
     indent:=indent-3;
     printout("</matrix>")
  >>;
end;

symbolic procedure matrix_rows( elem );
begin;
  if (elem neq()) then 
     <<	printout("<matrixrow>");           
	indent:=indent+3;
	row(car elem); 	
  	indent:=indent-3;
	printout("</matrixrow>");           
	matrix_rows( cdr elem ); >>
end;

symbolic procedure row( elem );
begin;
  if (elem neq()) then 
 	<< expression(car elem); row(cdr elem);>>
end;

%This function searches for arbitrary integers, or complex in the reduce
%output. If so, it declares these variables in a forall statement.

symbolic procedure arbitrary_c( elem );
begin;
found_int:=nil;
found_mat_int:=nil;
found_compl:=nil;
found_mat_compl:=nil;

if (PAIRP elem) then <<
   if (car elem='mat) then 
     << isarb_mat_compl(cdr elem);
	isarb_mat_int(cdr elem)>>
   else  
     <<	isarb_compl(elem); 
  	isarb_int(elem)>>;



  if ((found_compl=1) OR (found_int=1)) then 
   << flagg:=1;
      printout( "<apply><forall/>" );
      indent:=indent+3;
      print_arb_compl(elem);
      print_arb_int(elem);
      printout( "<condition>");
      indent:=indent+3;
      if ((found_compl=1) AND (found_int=1)) then 
        << printout( "<apply><and/>" ); 
           indent:=indent+3>>
      else 
        if ((length consts_compl) > 1) then 
          <<  printout( "<apply><and/>" ); 
              indent:=indent+3>> 
        else
           if ((length consts_int) > 1) then 
             << printout( "<apply><and/>" ); 
                indent:=indent+3>>;


      if (found_compl=1) then 
        in_complexML( consts_compl );
      if (found_int=1) then 
        in_integerML( consts_int );


      if ((found_compl=1) AND (found_int=1)) then 
         << indent:=indent-3;
            printout( "</apply>" )>>
      else 
          if ((length consts_compl) > 1) then 
            << indent:=indent-3;
               printout( "</apply>" )>> 
          else
              if ((length consts_int) > 1) then 
                << indent:=indent-3;
                   printout( "</apply>" )>>;

      indent:=indent-3;
      printout( "</condition>" )>>;


  if ((found_mat_compl=1) OR (found_mat_int=1)) then 
    << flagg:=1;
       printout( "<apply><forall/>" );
       indent:=indent+3;
       printarb_mat_compl(cdr elem);
       printarb_mat_int(cdr elem);
       printout( "<condition>");
       indent:=indent+3;

       if ((found_mat_compl=1) AND (found_mat_int=1)) then 
         << printout( "<apply><and/>" ); 
           indent:=indent+3>>
       else 
          if ((length consts_mat_compl) > 1) then 
            << printout( "<apply><and/>" ); 
               indent:=indent+3>> 
          else
             if ((length consts_mat_int) > 1) then 
               << printout( "<apply><and/>" ); 
                  indent:=indent+3>>;


       if (found_mat_compl=1) then 
          in_complexML( consts_mat_compl );
       if (found_mat_int=1) then 
          in_integerML( consts_mat_int );

       if ((found_mat_compl=1) AND (found_mat_int=1)) then 
         << indent:=indent-3;
            printout( "</apply>" )>>
       else 
     	  if ((length consts_mat_compl) > 1) then 
            << indent:=indent-3;
               printout( "</apply>" )>> 
          else
     	    if ((length consts_mat_int) > 1) then 
              << indent:=indent-3;
                 printout( "</apply>" )>>;

     indent:=indent-3;
     printout( "</condition>" )>>; 
  >>
end;

symbolic procedure in_complexML( elem );
begin;
  if (elem neq ()) then <<
    printout("<reln><in/>");
    indent:=indent+3;
    printsub2( car elem, 'compl );
    printout("<complexes/>");
%    printout("<ci type=""set""> C </ci>");
    indent:=indent-3;
    printout("</reln>");   
    in_complexML( cdr elem )>>;	
end;


symbolic procedure in_integerML( elem );
begin;
  if (elem neq ()) then <<
    printout("<reln><in/>");
    indent:=indent+3;
    printsub2( car elem, 'int );
    printout("<integers/>");
%   printout("<ci type=""set""> Z </ci>");
    indent:=indent-3;
    printout("</reln>");   
    in_integerML( cdr elem )>>;	
end;

symbolic procedure close_forall();
begin;
  if (flagg=1) then printout("</apply>");
end;

%Prints out setq statements as <declare> statements.

symbolic procedure setqML( elem );
begin;
  printout( "<declare>" );
  indent:=indent+3;
  expression(cadr elem);
  expression( caddr elem);
  indent:=indent-3;
  printout( "</declare>" );
end;

%Prints out lists.

symbolic procedure listML( elem );
begin;
  printout( "<list>" );  
  indent:=indent+3;
  multilists( elem );
  indent:=indent-3;
  printout( "</list>" );
end;

symbolic procedure multilists( elem );
begin;
 if elem neq nil then 
  if ((LENGTH elem)=1) then expression (car elem)
    else <<expression(car elem); multilists(cdr elem);>>  
end;

%This function takes in a reduce expression, and parses it. It also takes
%expressions created by the above program.



symbolic procedure expression( elem );
begin scalar aa;
if (ATOM elem) then f4( elem ) else
if car elem='!:RD!: then <<printout elem>> else
 <<

  

  if (aa:=assoc(car elem, unary!*)) then <<
    if caddr aa = nil then 
      apply(cadr aa, list cdr elem)
    else
      apply(cadr aa, list(cdr elem, caddr aa)) >> else
  if ((car elem)= '!*sq)  then expression (PREPSQ (cadr elem)) else 
  operator_fn(elem);>>;
end;

%Prints out sum, or products.

symbolic procedure sum_prodML( elem, tty );
begin;
 printout("<apply>");
 princ "<"; princ tty; princ "/>";
 indent:=indent+3;
 printout("<bvar>");
 indent:=indent+3;
 expression( cadr elem );
 indent:=indent-3;
 printout("</bvar>");
 printout("<lowlimit>");
 indent:=indent+3;
 expression( caddr elem );
 indent:=indent-3;
 printout("</lowlimit>");
 printout("<uplimit>");
 indent:=indent+3;
 expression( cadddr elem );
 indent:=indent-3;
 printout("</uplimit>");
 expression car elem;
 indent:=indent-3;
 printout("</apply>");
end;  

%Prints out derivatives.

symbolic procedure dfml( elem );
begin scalar test;
 test:=cdr elem;
 if length test=1 OR (length test=2 AND NUMBERP cadr test) then
    printout("<apply><diff/>")
 else  
    printout("<apply><partialdiff/>");
 indent:=indent+3;
 dfargs(cdr elem);                % FJW: two statements swapped
 expression(car elem);
 indent:=indent-3;
 printout("</apply>"); 
end;

symbolic procedure dfargs( elem );
begin; 
 if elem neq nil then 
   << if length elem>1 then 
      <<  if NUMBERP cadr elem then 
          <<printout("<bvar>");
	    indent:=indent+3;
	    expression car elem;
            degreeML(cadr elem);
	    indent:=indent-3;
            printout("</bvar>");
            dfargs(cddr elem)>>
          else 
          <<printout("<bvar>");
	    indent:=indent+3;
	    expression car elem;
	    indent:=indent-3;
            printout("</bvar>");
            dfargs(cdr elem)>>; >>
      else 
        << printout("<bvar>");
 	   indent:=indent+3;
	   expression car elem;
 	   indent:=indent-3;
           printout("</bvar>");
           dfargs(cdr elem)>> >>;
end;

%Prints out degree statements.

symbolic procedure degreeML( elem );
begin;
 printout("<degree>");
 indent:=indent+3;
 expression( elem );
 indent:=indent-3;
 printout("</degree>");
end;

      

symbolic procedure complpart( elem, tty);
begin;
 printout("<apply><fn><");
 princ tty;
 princ "></fn>";
 indent:=indent+3;
 expression(car elem);
 indent:=indent-3;
 printout("<apply>");
end; 

%Prints out set theory related functions.

symbolic procedure sets(elem, tty);
begin;
 printout("<apply>");
 princ "<"; princ tty; princ "/>"; 
 indent:=indent+3;
 multi_elem( elem );
 indent:=indent-3;
 printout("</apply>");
end; 

%Prints out relns.

symbolic procedure reln(elem, tty);
begin;
 printout("<reln>");
 princ "<"; princ tty; princ "/>"; 
 indent:=indent+3;
 multi_elem( elem );
 indent:=indent-3;
 printout("</reln>");
end; 

%Prints out a set.

symbolic procedure setML( elem );
begin;
  printout("<set>");
  indent:=indent+3;
  multi_elem( elem );
  indent:=indent-3;
  printout("</set>");
end;

%Prints out unknown functions as a function. It prints out all variables
%declared a soperators.

symbolic procedure operator_fn( elem );
begin scalar asso;
asso := atsoc(car elem, '((arcsinh . sinh)(arcsech . sech)
	(arccosh . cosh)(arccsch csch) (arctanh . tanh) 
	(arccoth . coth)) );
if asso then <<
   printout "<apply><inverse/>";
   princ cdr asso;  >>
else <<
  printout("<apply><fn><ci>");
  princ car elem;
  princ "</ci></fn>" >>;
  indent:=indent+3;
  multi_args(cdr elem);
  indent:=indent-3;
  printout("</apply>");
end;

%Reads through a list and prints out each component. 

symbolic procedure multi_args( elem );
begin;
  if  (elem neq ()) then <<expression(car elem); multi_args( cdr elem );>> 
end;

%Prints out all trigonometric functions which have not the same tag name,
%as reduce function.

symbolic procedure trigML(elem, type);
begin;
  printout("<apply>");
  if ((type='acos) OR (type='asin) OR (type='atan)) then 
    << if (type='acos) then princ "<arccos/>";
       if (type='asin) then princ "<arcsin/>"; 
       if (type='atan) then princ "<arctan/>">>;
  indent:=indent+3;
  expression(car elem);
  indent:=indent-3;
  printout("</apply>");
end;

%Prints out all unary functions such as log, or many trig functions.

symbolic procedure unary( elem, type );
begin;
  printout("<apply>");
  princ "<";
  princ type;
  princ "/>";
  indent:=indent+3;
  expression(car elem );
  indent:=indent-3;
  printout("</apply>");
end;

%Prints out logs with a base.

symbolic procedure log_baseML(elem, type);
begin;
  printout("<apply><log/>");
  indent:=indent+3;
  printout("<logbase>");
  indent:=indent+3;
  if (type='logb) then expression(cadr elem);
  if (type='log10) then f4(10);
  indent:=indent-3;
  printout("</logbase>");
  expression(car elem);
  indent:=indent-3;
  printout("<apply>");
end; 

%Prints out equal relns.

symbolic procedure equalML( elem );
begin;
  printout( "<reln><eq/>" );
  indent:=indent+3;
  expression(car elem);
  expression(cadr elem);
  indent:=indent-3;
  printout( "</reln>" );
end;

%Prints out square roots.

symbolic procedure sqrtML( elem , type);
begin;
  printout( "<apply><root/>" );
  indent:=indent+3;
  printout( "<degree><cn> 2 </cn></degree>" );
  expression( car elem );
  indent:=indent-3;
  printout( "</apply>" );
end;

%Prints out integrals.

symbolic procedure integralML( elem );
begin;
  printout( "<apply><int/>" );
  indent:=indent+3;
  printout( "<bvar>" );
  indent:=indent+3;
  expression (cadr elem);
  indent:=indent-3;
  printout( "</bvar>" );
  if (length cdr elem >1) then 
     << printout("<lowlimit>");
        indent:=indent+3;
     	expression( caddr elem );
   	indent:=indent-3;
     	printout("</lowlimit>");
     	printout("<uplimit>");
     	indent:=indent+3;
     	expression( cadddr elem );
     	indent:=indent-3;
     	printout("</uplimit>")>>;
  expression( car elem );
  indent:=indent-3;
  printout( "</apply>" );
end;

%Prints out quotients.

symbolic procedure quotientML( elem );
begin;
  if (NUMBERP car elem) AND (NUMBERP cadr elem) then <<
     if !*web=nil then printout("<cn type=""rational""> ")
     else printout("<cn type=&quot;rational&quot;> ");
     princ car elem;
     princ " <sep/> ";
     princ cadr elem;
     princ " </cn>">> 
  else <<     
     printout( "<apply><divide/>" );
     indent:=indent+3;
     expression( car elem );
     expression( cadr elem );
     indent:=indent-3;
     printout( "</apply>" )>>;
end;

%Prints out all n_nary functions.

symbolic procedure n_nary( elem, type );
begin;
  if car elem = 'e AND type = 'power then unary(cdr elem, 'exp)
  else <<
    printout( "<apply>" );
    princ "<";
    princ type;
    princ "/>";
    indent:=indent+3;
    multi_elem( elem );
    indent:=indent-3;
    printout( "</apply>" )>>
end;

symbolic procedure multi_elem( elem );
begin;
   if ((length elem)=1) then expression( car elem )
       else <<expression( car elem ); multi_elem( cdr elem );>>
end;


symbolic procedure minusML( elem );
begin;
  printout( "<apply><minus/>" );
  indent:=indent+3;
  multiminus( elem );
  indent:=indent-3;
  printout( "</apply>" );
end;  

symbolic procedure multiminus( elem );
begin;
  expression(car elem);
  if ((length elem)=2) then expression (cadr elem);
end;

%Prints out all pieces of data: i.e terminal symbols.
%They can be numbers, identifiers, or constants.

symbolic procedure f4(exp);
begin;
if (exp='pi) then
     princ "<pi/>"
else if (exp='euler_gamma) then
     princ "<eulergamma/>"
else if (exp='true) then
     princ "<true/>"
else if (exp='false) then
     princ "<false/>"
else if (exp='!Na!N) then
     princ "<notanumber/>"
else
if (exp='infinity) then 
  << if !*web=nil then printout("<cn type=""constant"">") 
     else printout("<cn type=&quot;constant&quot;>"); 
     princ "&infin;"; 
     princ "</cn>">>
else << 
  if (exp='e) then 
   << if !*web=nil then printout("<cn type=""constant"">") 
      else printout("<cn type=&quot;constant&quot;>"); 
      princ "&ExponentialE;"; 
      princ "</cn>">>
else << 
   if (exp='i) then 
    << if !*web=nil then printout("<cn type=""constant"">")
       else printout("<cn type=&quot;constant&quot;>");
       princ "&ImaginaryI;"; 
       princ "</cn>">>
   else <<
      if (NUMBERP exp) then 
	<< printout "<cn";
           if (FLOATP exp) then
		 <<if !*web=nil then princ " type=""real"">"
                     else princ " type=&quot;real&quot;>" >>
 	   else
           if (FIXP exp) then
		 <<if !*web=nil then princ " type=""integer"">"
                   else princ " type=&quot;integer&quot;>" >>
		else princ ">";
              princ exp;
                         princ "</cn>">>;
       if (IDP exp) then  
	 <<  printout "<ci";
	    if (listp exp) then
		 <<if !*web=nil then princ " type=""list"">"
                   else princ " type=&quot;list&quot;>">>
 	     else
	    if (vectorp exp) then
		 <<if !*web=nil then princ " type=""vector"">"
                   else princ " type=&quot;vector&quot;>">>
 	    else princ ">";
            princ exp;
            princ "</ci>">>; 
         >> 
      >>
   >>
end;

%Functions used to print out variables with a subscript.

symbolic procedure printsub( subscript, type );
begin;
  printout("<bvar>");
  indent:=indent+3;
  printout("<ci>");
  indent:=indent+3;
  printout( "<msub>" );
  indent:=indent+3;
  if (type='compl) then printout( "<mi>c</mi>" );
  if (type='int) then printout( "<mi>d</mi>" );
  printout( "<mn>" );
  princ subscript;
  princ "</mn>"; 
  indent:=indent-3;
  printout( "</msub>" );
  indent:=indent-3;
  printout("</ci>");
  indent:=indent-3;
  printout("</bvar>");
end;


symbolic procedure printsub2( subscript, type );
begin;
  printout("<ci>");
  indent:=indent+3;
  printout( "<msub>" );
  indent:=indent+3;
  if (type='compl) then  printout( "<mi>c</mi>" );
  if (type='int) then  printout( "<mi>d</mi>" );
  printout( "<mn>" );
  princ subscript;
  princ "</mn>"; 
  indent:=indent-3;
  printout( "</msub>" );
  indent:=indent-3;
  printout("</ci>");
end;

%Prints out expressions in math form. Plagiarised from reduce code of
%mathprint

symbolic procedure ma_print l;
begin scalar temp;
   temp:=outputhandler!*;
   outputhandler!*:=nil;
   terpri!* nil;
   if !*web=nil then maprin "<cn type=""real"">"
   else maprin "<cn type=&quot;real&quot;>";
   maprin l;
   maprin "</cn>";
   terpri!* nil;
   outputhandler!*:=temp;
end;

%Function in charge of doing all printing in order to make sure the
%indentation is always correct.

symbolic procedure printout( str );
begin;
   if !*web = nil then terpri();
   if !*web = nil then for i := 1:indent
      do << princ " " >>;
   if PAIRP str then
    <<if car str='!:rd!: OR car str='!:rn!: then ma_print str     
    else princ str>>
   else princ str;
end;

%Following functions are quite obscure. They find arbitrary constants in
%expressions and matrices. Then record them, and everytime they appear, are
%replaced with a fancy subscripts C, or D.

symbolic procedure issq( elem );
begin scalar value;
 value:=0;
        if (ATOM elem) then value:=0
	   else <<if ((car elem)='!*sq) then value:=1
                  else value:=0>>; 
  return value;
end;

symbolic procedure isarb_compl( elem );
begin;
if (PAIRP elem) then <<
  if ((car elem)= 'arbcomplex) then found_compl:=1
     else  multi_isarb_compl(cdr elem);>> 
end;

symbolic procedure multi_isarb_compl( elem );
begin;
if (PAIRP elem) then <<
   if (elem=()) then 
      else <<isarb_compl(car elem); multi_isarb_compl( cdr elem);>> >>
end;


symbolic procedure isarb_int( elem );
begin;
if (PAIRP elem) then <<
  if ((car elem)= 'arbint) then found_int:=1
     else  multi_isarb_int(cdr elem);>> 
end;

symbolic procedure multi_isarb_int( elem );
begin;
if (PAIRP elem) then <<
   if (elem=()) then 
      else <<isarb_int(car elem); multi_isarb_int( cdr elem);>> >>
end;

symbolic procedure print_arb_compl( elem );
begin;
if (PAIRP elem) then <<
  if ((car elem)= 'arbcomplex) then 
     << if (xnp(list (cadr elem),consts_compl) eq nil) then 
	  << printsub(cadr elem, 'compl); 
	     consts_compl:=cons(cadr elem, consts_compl)>> >>
  else  multi_compl(cdr elem);>>
end;

symbolic procedure multi_compl( elem );
begin;
   if (elem=()) then 
      else <<print_arb_compl(car elem); multi_compl( cdr elem);>>
end;


symbolic procedure print_arb_int( elem );
begin;
if (PAIRP elem) then <<
  if ((car elem)= 'arbint) then 
     << if (xnp(list (cadr elem),consts_int) eq nil) then 
	  << printsub(cadr elem, 'int); 
	     consts_int:=cons(cadr elem, consts_int)>> >>
  else  multi_int(cdr elem);>>
end;

symbolic procedure multi_int( elem );
begin;
   if (elem=()) then 
      else <<print_arb_int(car elem); multi_int( cdr elem);>>
end;

symbolic procedure isarb_mat_int( elem );
begin;
  if (elem neq()) then  
    << isarb_row_int(car elem); 	
       isarb_mat_int( cdr elem ); >>
end;

symbolic procedure isarb_row_int( elem );
begin;
  if (elem neq()) then 
 	<< if (issq(car elem)=1) then 
		if (PAIRP (PREPSQ cadr (car elem))) then
		   if (car (PREPSQ cadr (car elem))='arbint) then  
 			found_mat_int:=1;
	   isarb_row_int(cdr elem);>>
end;


symbolic procedure isarb_mat_compl( elem );
begin;
  if (elem neq()) then 
	<< 
	isarb_row_compl(car elem); 	
	isarb_mat_compl( cdr elem ); >>
end;

symbolic procedure isarb_row_compl( elem );
begin;
  if (elem neq()) then 
 	<< if (issq(car elem)=1) then
		if (PAIRP (PREPSQ cadr (car elem))) then
		   if (car (PREPSQ cadr (car elem))='arbcomplex) then  
 			found_mat_compl:=1; 
	   isarb_row_compl(cdr elem);>>
end;

symbolic procedure printarb_mat_compl( elem );
begin;
  if (elem neq()) then 
    << printarb_row_compl(car elem); 	
       printarb_mat_compl( cdr elem ); >>
end;

symbolic procedure printarb_row_compl( elem );
begin scalar value;
  if (elem neq()) then 
 	<< if (issq(car elem)=1) then 
	      if (PAIRP (PREPSQ cadr (car elem))) then 
	        << value:=cadr PREPSQ cadr car elem;
       	           if (car (PREPSQ cadr (car elem)))='arbcomplex then 
 	              if (xnp(list (value), consts_mat_compl) eq nil) then
		        << printsub(value, 'compl);
 		           consts_mat_compl:=cons(value, consts_mat_compl)>> >>; 
	   printarb_row_compl(cdr elem);>>
end;


symbolic procedure printarb_mat_int( elem );
begin;
  if (elem neq()) then 
	<< 
	printarb_row_int(car elem); 	
	printarb_mat_int( cdr elem ); >>
end;

symbolic procedure printarb_row_int( elem );
begin scalar value;
  if (elem neq()) then 
 	<< if (issq(car elem)=1) then 
	      if (PAIRP (PREPSQ cadr (car elem))) then 
 	        << value:=cadr PREPSQ cadr car elem;
       	           if (car (PREPSQ cadr (car elem)))='arbint then 
 	              if (xnp(list (value), consts_mat_int) eq nil) then
		        << printsub(value, 'int);
 		           consts_mat_int:=cons(value, consts_mat_int)>> >>; 
	   printarb_row_int(cdr elem);>>
end;






%Following function is the same as math_ml_printer, just that it prints out
%input given from mml, which reads from files, and not form the reduce
%normal output stream.
 

symbolic procedure math_ml (u);
  << % FLUID '(indent flagg found_int found_compl consts_compl
     %        consts_int !*mathprint);
     % FLUID '(found_mat_int found_mat_compl consts_mat_int
     %        consts_mat_compl);
     !*mathprint:=0;
     found_mat_int=0$;
     found_mat_compl=0$;
     indent:=0$
     consts_compl:=()$
     consts_mat_compl:=()$
     consts_int:=()$
     consts_mat_int:=()$
     found_int:=0$
     found_compl:=0$
     flagg:=0$
     if (PAIRP u) then <<
        printout("<math>");
 	indent:=3;

        if ((car u)='setq) then 
          <<if (PAIRP caddr u) then 
	      if (issq(caddr u)=1) then arbitrary_c( PREPSQ cadr caddr u ) 
		 else
	            if (caaddr u='mat) then arbitrary_c(caddr u) 
		    else  
	              if (caaddr u='list) then arbitrary_c( !*a2k caddr u);
	     setqML( u )>>
	else 
           if ((car u)='list) then 
	     << arbitrary_c( !*a2k u );    
	  	listML(cdr u)>>
	   else 
    	      if ((car u)='mat) then 
	        << arbitrary_c( u );
	  	   matrixML(cdr u)>>
	      else
    	         if ((car u)='!*sq) then 
  	 	   << arbitrary_c(PREPSQ (cadr u));
         	      expression(PREPSQ (cadr u))>>
	         else expression(u); 

             indent:=indent-3;
	     close_forall();
	     indent:=0;
	     printout( "</math>" ) 
	>> 
     else 
	if (ATOM u) then << 
           printout( "<math>" );
           indent:=3; 
           expression( u );
	   indent:=0;
           printout( "</math>" )>>
  else ; >>;
      

%This function executes certain commands when switches state are changed.
%It will change the outputhandler!* when mathml is set to on or both is set
%to on. And then modify it accroding to the switches states.

symbolic procedure onoff(u,bool);
   begin scalar x,y;
      if not idp u then typerr(u,"switch")
       else if not flagp(u,'switch)
               then rerror(rlisp,25,list(u,"not defined as switch"));
      x := intern compress append(explode '!*,explode u);
      if !*switchcheck and lispeval x eq bool then return nil
       else if y := atsoc(bool,get(u,'simpfg))
        then lispeval('progn . append(cdr y,list nil));
      if bool and x eq '!*!r!a!i!s!e then x := '!*raise; % Special case.
   if x='!*web AND bool=t then 
      outputhandler!*:='math_ml_printer;
   if x='!*web AND bool=nil then 
      if !*mathml neq t then outputhandler!*:=nil;
   if x='!*mathml AND bool=t then 
      outputhandler!*:='math_ml_printer;
   if x='!*mathml AND bool=nil then
      if !*both=nil then  
        outputhandler!*:=nil;
   if x='!*both AND bool=t then 
      outputhandler!*:='math_ml_printer;
   if x='!*both AND bool=nil then 
      if !*mathml=nil then    
        outputhandler!*:=nil
      else outputhandler!*:='math_ml_printer;

       set(x,bool);
   end;

lisp operator mml;
lisp operator parseml;

endmodule;

end;


REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]