% ----------------------------------------------------------------------
% $Id: acfsfsiat.red,v 1.4 1999/04/12 09:25:59 sturm Exp $
% ----------------------------------------------------------------------
% Copyright (c) 1995-1999 Andreas Dolzmann and Thomas Sturm
% ----------------------------------------------------------------------
% $Log: acfsfsiat.red,v $
% Revision 1.4 1999/04/12 09:25:59 sturm
% Updated comments for exported procedures.
%
% Revision 1.3 1999/03/23 12:26:29 sturm
% Renamed switch rlsisqf to rlsiatadv.
%
% Revision 1.2 1999/03/23 07:59:43 dolzmann
% Added missing CVS header.
% Added fluids for the rcsid of the file and for the copyright information.
% Added copyright information.
%
% Revision 1.1 1997/08/22 17:30:42 sturm
% Created an acfsf context based on ofsf.
%
% ----------------------------------------------------------------------
lisp <<
fluid '(acfsf_siat_rcsid!* acfsf_siat_copyright!*);
acfsf_siat_rcsid!* := "$Id: acfsfsiat.red,v 1.4 1999/04/12 09:25:59 sturm Exp $";
acfsf_siat_copyright!* := "Copyright (c) 1995-1999 A. Dolzmann and T. Sturm"
>>;
module acfsfsiat;
% Algebraically closed field standard form simplification for atomic
% formulas. Submodule of [acfsf].
procedure acfsf_simplat1(f,sop);
% Algebraically closed field standard form simplify atomic formula.
% [f] is an atomic formula; [sop] is the boolean operator [f]
% occurs with or [nil]. Accesses switches [rlsiatadv], [rlsifac],
% [rlsiexpl], and [rlsiexpla]. Returns a quantifier-free formula
% that is a simplified equivalent of [f].
begin scalar rel,lhs;
rel := acfsf_op f;
if not (rel memq '(equal neq)) then
return nil;
lhs := acfsf_arg2l f;
if domainp lhs then
return if acfsf_evalatp(rel,lhs) then 'true else 'false;
lhs := quotf(lhs,sfto_dcontentf lhs);
if minusf lhs then
lhs := negf lhs;
if null !*rlsiatadv then return acfsf_0mk2(rel,lhs);
if rel eq 'equal then return acfsf_simplequal(lhs,sop);
if rel eq 'neq then return acfsf_simplneq(lhs,sop)
end;
procedure acfsf_simplequal(lhs,sop);
% Algebraically closed field standard form simplify [equal]-atomic
% formula. [lhs] is a term. Returns a quantifier-free formula.
begin scalar w,ff,ww;
ff := sfto_sqfpartf lhs;
if !*rlsifac and (!*rlsiexpla or !*rlsiexpl and sop = 'or) then
return acfsf_facequal ff;
return acfsf_0mk2('equal,ff)
end;
procedure acfsf_facequal(f);
% Left hand side factorization [equal] case.
rl_smkn('or,for each x in cdr fctrf f collect acfsf_0mk2('equal,car x));
procedure acfsf_simplneq(lhs,sop);
% Algebraically closed field standard form simplify [neq]-atomic
% formula. [lhs] is a term. Returns a quantifier-free formula.
begin scalar w,ff,ww;
ff := sfto_sqfpartf lhs;
if !*rlsifac and (!*rlsiexpla or !*rlsiexpl and sop = 'and) then
return acfsf_facneq ff;
return acfsf_0mk2('neq,ff)
end;
procedure acfsf_facneq(f);
% Left hand side factorization [neq] case.
rl_smkn('and,for each x in cdr fctrf f collect acfsf_0mk2('neq,car x));
procedure acfsf_evalatp(rel,lhs);
% Algebraically closed field standard form evaluate atomic formula.
% [rel] is a relation; [lhs] is a domain element. Returns a truth
% value equivalent to $[rel]([lhs],0)$.
if rel eq 'equal then null lhs
else if rel eq 'neq then not null lhs
else rederr {"acfsf_evalatp: unknown operator ",rel};
endmodule; % [acfsfsiat]
end; % of file