module sum; % Driver for various sum capabilities.
% Author: Anthony C. Hearn, derived from code by F. Kako and W. Koepf.
create!-package('(sum sum2 complx prod),'(contrib sum));
% create!-package('(sum sum2 complx prod zeilberg),'(contrib sum));
fluid '(!*zeilberg);
switch zeilberg;
put('sum,'simpfn,'simp!-sum);
symbolic procedure freeof!-df(u, v);
% check u contains differential operator with respect to v;
if atom u then t
else if car(u) eq 'df
then freeof!-df(cadr u,v) and not smember(v,cddr u)
else freeof!-dfl(cdr u,v);
symbolic procedure freeof!-dfl(u, v);
if null u then t else freeof!-df(car u,v) and freeof!-dfl(cdr u,v);
symbolic procedure simp!-sum u;
%ARGUMENT CAR U: expression of prefix form.
% CADR U: kernel.
% CADDR U: lower bound.
% CADDDR U: upper bound.
%value : expression of sq form.
begin scalar y;
y := cdr u;
u := car u;
if not atom y and not freeof!-df(u, car y) then
if atom y
then return !*p2f(car fkern(list('sum,u)) .* 1) ./ 1
else return sum!-df(u, y);
u := simp!* u;
return if null numr u then u
else if atom y
then !*p2f(car fkern(list('sum,prepsq u)) .* 1) ./ 1
else if !*zeilberg then gosper!*(mk!*sq u,y)
else simp!-sum0(u,y)
end;
endmodule;
end;