File r38/packages/specfn/sfpsi.red artifact 9bfc6e6b14 part of check-in 3af273af29


module sfpsi; % Procedures relevant to the digamma, polygamma & zeta
	      % functions.

% Author: Chris Cannam, Sept/Oct '92.

% Added: PSI_SIMP.RED  F.J.Wright, 2 July 1993
%        The polygamma rules are added by Y.K. Man on 9 July 1993
 
%	 Yiu K. Man's email is: myk@maths.qmw.ac.uk

imports sq2bf!*, sf!*eval;
exports do!*psi, do!*polygamma, do!*trigamma!*halves,
   do!*zeta, do!*zeta!*pos!*intcalc;


%
% A couple of global values are used (from specfns.red) which can speed
% up psi calculations (a bit) when repeated calculations are made at the
% same level of precision.

fluid '(compute!-bernoulli);


%
% Here's an approximation sufficiently good for most purposes
%   (assuming it's right, that is); if it isn't good enough, it
%   won't be used.  This approximation is to 506 dec. places.
%

algebraic (old!*precision := precision(0));
precision 510;

algebraic procedure get!-eulers!-constant;
   begin scalar a;
      a := 577215664901532860606512090082402431 * 10^40 +
		       0421593359399235988057672348848677267776;
      a := a * 10^40 + 6467093694706329174674951463144724980708;
      a := a * 10^40 + 2480960504014486542836224173997644923536;
      a := a * 10^40 + 2535003337429373377376739427925952582470;
      a := a * 10^40 + 9491600873520394816567085323315177661152;
      a := a * 10^40 + 8621199501507984793745085705740029921354;
      a := a * 10^40 + 7861466940296043254215190587755352673313;
      a := a * 10^40 + 9925401296742051375413954911168510280798;
      a := a * 10^40 + 4234877587205038431093997361372553060889;
      a := a * 10^40 + 3312676001724795378367592713515772261027;
      a := a * 10^40 + 3492913940798430103417771778088154957066;
      a := a * 10^30 + 107501016191663340152278935868;
      a := a * (10**(-506));
      return a
   end;

algebraic (euler!*constant := get!-eulers!-constant());

algebraic precision old!*precision;
algebraic clear old!*precision;


%
% Define some suitable rules for initial simplification of psi
%   (digamma) function expressions.
%
% Comments:
%
%  When rounded mode is on, psi(number) is always computed
%     directly unless it simplifies to an expression in psi(1/2) or
%     psi(1), in which case it is simplified. Expressions in psi(1/2)
%     and psi(1) are expanded into expressions in euler!*constant.
%     If, however, the precision is greater than 500, then
%     euler!*constant is not stored sufficiently precisely, and all
%     such expressions will be computed without simplification.
%
% When rounded mode is off, psi(number) will _never_ be expanded
%     into an expression involving euler!*constant, but will always
%     be expanded into some form involving psi(p), where 0<p<1.
%     It should be borne in mind that computations which will need
%     numerical results could do without such expansion, and there-
%     fore such computations should be performed in rounded mode
%     as soon as possible.
%
% Expressions for the derivative and integral of psi are included.
%

algebraic operator psi, polygamma;
symbolic operator psi!*calc;

algebraic (psi!*rules := {

   psi(~x,~xx) => polygamma(x,xx),

   psi(~z)  =>  infinity
      when repart z = floor repart z and impart z = 0 and z < 1,

   psi(~z)  =>  -euler!*constant
      when numberp z and z = 1
      	 and symbolic !*rounded and precision(0) < 501,

   psi(~z)  =>  -euler!*constant - 2 * log(2)
      when numberp z and z = (1/2)
      	 and symbolic !*rounded and precision(0) < 501,

   psi(~z)  =>  do!*psi(z)
      when numberp z and impart z = 0 and symbolic !*rounded,

   psi(~z)  =>  (psi(z/2) + psi((z+1)/2) + 2 * log(2)) / 2
      when numberp z and impart z = 0
      	 and (z/2) = floor (z/2)
      	    and z > 0 and not symbolic !*rounded,

   psi(~z)  =>  psi(z-1) + (1 / (z-1))
      when numberp z and impart z = 0
      	 and z > 1 and not symbolic !*rounded,

   psi(~z)  =>  psi(1-z) + pi*cot(pi*(1-z))
      when numberp z and impart z = 0
      	 and z < 0 and not symbolic !*rounded,

   psi(~z)  =>  psi(1-z) + pi*cot(pi*(1-z))
      when numberp z and impart z = 0
         and z > 1/2 and z < 1 and not symbolic !*rounded,

   df(psi(~z),z)  =>  polygamma(1, z),

   int(psi(~z),z)  =>  log gamma(~z)

})$

algebraic (let psi!*rules);


% PSI_SIMP.RED  F.J.Wright, 2 July 1993
% The polygamma rules are added by Y.K. Man on 9 July 1993

% Support for the psi operator.
% =============================
% psi(x) = df(log Gamma(x), x) as in specfn package, etc.
% The specfn package does not currently provide the required
% simplifications.

algebraic; 

% Simplify to "standard form" in which argument is allowed a numeric 
% shift in the range 0 <= shift < 1:

psi_rules := {
   % Rule for integer shifts (x + 3), and non-integer shifts (x + 3/2)in
   % a non-integer number domain (on rational) or with "on intstr, div":
   psi(~x+~n) => psi(x+n-1) + 1/(x+n-1) when numberp n and n >= 1,
   psi(~x+~n) => psi(x+n+1) - 1/(x+n) when numberp n and n < 0,
   polygamma(~m,~x+~n) => polygamma(m,x+n-1)+(-1)^m*factorial(m)
	/(x+n-1)^(m+1) when numberp n and fixp m and n >= 1,
   polygamma(~m,~x+~n) => polygamma(m,x+n+1)-(-1)^(m)*factorial(m)
	/(x+n)^(m+1) when numberp n and fixp m and n < 0,
   % Rule for rational shifts (x + 3/2) in the default (integer) number
   % domain and rational arguments (x/y + 3):
   psi((~x+~n)/~d) => psi((x+n-d)/d) + d/(x+n-d) when
      numberp(n/d) and n/d >= 1,
   psi((~x+~n)/~d) => psi((x+n+d)/d) - d/(x+n) when
      numberp(n/d) and n/d < 0,
   polygamma(~m,(~x+~n)/~d) => polygamma(m,(x+n-d)/d) +
      (-1)^m*factorial(m)*d^(m+1)/(x+n-d)^(m+1) when
      fixp m and numberp(n/d) and n/d >= 1,
   polygamma(~m,(~x+~n)/~d) => polygamma(m,(x+n+d)/d) -
      (-1)^m*factorial(m)*d^(m+1)/(x+n)^(m+1) when
      fixp m and numberp(n/d) and n/d < 0
};
% NOTE: The rational-shift rule does not work with "on intstr, div".

let psi_rules;

symbolic;

%
% Rules for initial manipulation of polygamma functions.
%

symbolic (operator polygamma!*calc, trigamma!*halves, printerr,
	polygamma_aux);


symbolic procedure printerr(x); rederr x;

algebraic procedure polygamma_aux(n,m);
	for ii:=1:(n-1) sum (1/ii**(m+1));

algebraic (polygamma!*rules := {

   polygamma(~n,~x)  =>  printerr
		 "Index of Polygamma must be an integer >= 0"
	when numberp n and (not fixp n or n < -1),

   polygamma(~n,~x)  =>  psi(x)
      when numberp n and n = 0,

   polygamma(~n,~x)  =>  infinity
      when numberp x and impart x = 0 and x = floor x and x < 1,

   polygamma(~n,~x)  =>  do!*trigamma!*halves(x)
      when numberp n and n = 1 and numberp x and impart x = 0
      	 and (not (x = floor x) and ((2*x) = floor (2*x))) and x > 1,

   polygamma(~n,~x)  =>  ((-1) ** (n)) * (factorial n) * (- zeta(n+1) +
			 polygamma_aux(x,n))
      when fixp x and x >= 1 and not symbolic !*rounded,

   polygamma(~n,~x)  => ((-1)**n) * factorial n * (-2 * (2**n) *
      	 zeta(n+1) + 2 * (2**n) + zeta(n+1))
      when numberp x and x = (3/2) and not symbolic !*rounded,

   polygamma(~n,~x)  =>  do!*polygamma(n,x)
      when numberp x and symbolic !*rounded
      	 and numberp n and impart n = 0 and n = floor n,

   df(polygamma(~n,~x), ~x)  =>  polygamma(n+1, x),

   int(polygamma(~n,~x),~x)  =>  polygamma(n-1,x)

})$

algebraic (let polygamma!*rules);



%
% Set up rules for the initial manipulation of zeta.
%
% Comments:
%
%     Zeta of positive even numbers and negative odd numbers
%     is evaluated (in terms of pi) always when its argument
%     has magnitude less than 31, and only in rounded mode
%     otherwise.  (This is because the coefficients get a bit
%     big when the argument is over about 30.)
%

algebraic operator zeta;
symbolic (operator zeta!*calc, zeta!*pos!*intcalc);


algebraic (zeta!*rules := {

   zeta(~x)  =>  (- (1/2))
      when numberp x and x = 0,

   zeta(~x)  =>  (pi ** 2) / 6
      when numberp x and x = 2,

   zeta(~x)  =>  (pi ** 4) / 90
      when numberp x and x = 4,

   zeta(~x)  =>  infinity
      when numberp x and x = 1,

   zeta(~x)  =>  0
      when numberp x and impart x = 0 and x < 0 and (x/2) = floor(x/2),

   zeta(~x)  =>  ((2*pi)**x) / (2*factorial x)*(abs bernoulli!*calc x)
      when numberp x and impart x = 0 and x > 0
      	 and (x/2) = floor (x/2) and x < 31,

   zeta(~x)  =>  - (bernoulli!*calc (1-x)) / (2*x)
      when numberp x and impart x = 0 and x < 0
      	 and x = floor x and x > -31,

   zeta(~x)  =>  ((2*pi)**x)/(2 * factorial x)*(abs bernoulli!*calc x)
      when numberp x and impart x = 0 and x > 0
      	 and (x/2) = floor(x/2) and x < 201 and symbolic !*rounded,

   zeta(~x)  =>  - (bernoulli!*calc (1-x)) / (1-x)
      when numberp x and impart x = 0 and x < 0
      	 and x = floor x and x > -201 and symbolic !*rounded,

   zeta(~x)  =>  (2**x)*(pi**(x-1))*sin(pi*x/2)*gamma(1-x)*zeta(1-x)
      when numberp x and impart x = 0 and x < 0
      	 and (x neq floor x or x < -200) and symbolic !*rounded,

   zeta(~x)  =>  do!*zeta!*pos!*intcalc(fix x)
      when symbolic !*rounded and numberp x and impart(x) = 0 and x > 1
      	 and x = floor x and (x <= 15 or precision 0 > 100
      	    or 2*x < precision 0),

   zeta(~x)  =>  do!*zeta(x)
      when numberp x and impart x = 0% and x > 1
      	 and symbolic !*rounded,

   df(zeta(~x),x)  =>  -(1/2)*log(2*pi)
      when numberp x and x = 0

})$

algebraic (let zeta!*rules);



algebraic procedure do!*psi(z);
   algebraic sf!*eval('psi!*calc,{z});

algebraic procedure do!*polygamma(n,z);
   algebraic sf!*eval('polygamma!*calc,{n,z});

algebraic procedure do!*trigamma!*halves(z);
   algebraic sf!*eval('trigamma!*halves,{z});

algebraic procedure do!*zeta(z);
   (if z <= 1.5 and precision(0) <= floor(4+3*z)
    then raw!*zeta(z)
    else if (3*z) > (10*precision(0)) then 1.0
    else if z > 100 then algebraic sf!*eval('zeta!*calc,{z})
    else algebraic sf!*eval('zeta!*general!*calc,{z}));

algebraic procedure do!*zeta!*pos!*intcalc(z);
   algebraic sf!*eval('zeta!*pos!*intcalc,{z});



%
% algebraic procedure psi!*calc(z);
%
%     Compute a value of psi. Works by first computing the
%     smallest positive integral x at which psi(x) is easily
%     computable to the current precision using no more
%     than the first 200 bernoulli numbers, then scaling up
%     the given argument (if necessary) so that it can be
%     computed, scaling down again afterwards.
%
%     Does not work for complex arguments.
%

algebraic procedure psi!*calc(z);
   begin scalar result, admissable, bern300, alglist!*, precom;
      integer prepre, scale, lowest;
      precom := complex!*off!*switch();
      prepre := precision 0;
      if prepre < !!nfpd then precision (!!nfpd + 1);
      admissable := (1 / (10 ** prepre)) / 2;
      if prepre = psi!*ld(0) then lowest := psi!*ld(1)
      else
      	 << bern300 := abs bernoulli!*calc 300;
      	    lowest := 1 +
      	       symbolic conv!:bf2i exp!:
      	       	  (divbf(log!:(divbf(sq2bf!* bern300,
      	       	     	timbf(i2bf!: 150,
      	       	     	   sq2bf!* admissable)), 4),
		     i2bf!: 300), 3);  % Use symbolic mode so as to
				    % force less accuracy for more speed
      	    psi!*ld(0) := prepre;
      	    psi!*ld(1) := lowest >> ;
      if lowest>repart z then scale := ceiling(lowest - repart z) + 20;
      z := z + scale;
      result := algebraic symbolic psi!*calc!*sub(z, scale, admissable);

      precision prepre;
      complex!*restore!*switch(precom);
      return result;
   end;


symbolic procedure psi!*calc!*sub(z, scale, admissable);
   begin scalar result, zsq, zsqp, this, bk;
      integer k, orda, rp; k := 2;
      z := sq2bf!* z;
      admissable := sq2bf!* admissable;
      zsq := timbf(z,z); zsqp := zsq;
      this := plubf(admissable, bfone!*);
      result := difbf (log!: (z,c!:prec!:()),
      	 divbf(bfone!*, timbf(bftwo!*, z)));
      orda := order!: admissable - 5; rp := c!:prec!:();
      while greaterp!: (abs!: this, admissable) do
      	 << bk := sq2bf!* symbolic algebraic bernoulli!*calc k;
      	    this := divide!:(bk, timbf(i2bf!: k, zsqp), rp);
      	    result := difbf(result, this);
      	    k := k + 2; rp := order!: this - orda;
      	    zsqp := timbf(zsqp, zsq) >>;
      for n := 1:scale do
      	 result := difbf(result, divbf(bfone!*, difbf(z, i2bf!: n)));
      return mk!*sq !*f2q mkround result;
   end;




%
% algebraic procedure polygamma!*aux(n,z);
%
%     Used by the procedure below, to implement the Reflection
%     Formula. This obtains an expression for
%     	     n
%     	    d
%     	    --- ( cot  ( pi * x ) )
%     	      n
%     	    dx
%     and substitutes z for x into it, returning the result.
%

algebraic procedure polygamma!*aux(n,z);
   begin scalar poly;
      clear dummy!*arg;
      poly := cot(pi * dummy!*arg);
      for k := 1:n do poly := df(poly, dummy!*arg);
      dummy!*arg := z;
      return poly;
   end;



%
% algebraic procedure polygamma!*calc(n,z);
%
%     Computes a value of the polygamma function, order n,
%     at z.  N must be an integer, and z must be real.  If
%     z is negative, the Reflection Formula is applied by
%     a call to polygamma!*aux (above); then the positive
%     argument is fed to polygamma!*calc!*s which does the
%     real work.
%

algebraic procedure polygamma!*calc(n,z);
   begin scalar result, z0, prepre, precom;
      precom := complex!*off!*switch();
      prepre := precision 0;
      if prepre < !!nfpd then precision (!!nfpd + 3)
      else precision (prepre + 3 + floor(prepre/50));
      if z > 0 then
      	 << z0 := z;
      	    result := algebraic symbolic polygamma!*calc!*s(n,z0) >>
      else
      	 << z0 := 1-z;
      	    result := ((-1)**n)*(pi*polygamma!*aux(n,z0) +
      	       algebraic symbolic polygamma!*calc!*s(n,z0)) >>;
      precision prepre;
      complex!*restore!*switch(precom);
      return result;
   end;




%
% symbolic procedure polygamma!*calc!*s(n,z);
%
%     Implementation of an asymptotic series for the poly-
%     gamma functions.  Computes a scale factor which should
%     (hopefully) provide a minimum argument for which this
%     series is valid at the given order and precision; then
%     computes the series for that argument and scales down
%     again using the Recurrence Formula.
%

symbolic procedure polygamma!*calc!*s(n,z);
   begin scalar result, this, admissable, partial,
         zexp, zexp1, zsq, nfac, nfac1, kfac, rescale, signer, z0;
      integer k, nm1, nm2, rp, orda, min, scale;

      z := sq2bf!* z; signer := i2bf!:((-1)**(n-1));
      admissable := divide!:(bfone!*,i2bf!:(bf!*base**c!:prec!:()),8);

      min := 10 + conv!:bf2i
              exp!:(times!:(divide!:(bfone!*,i2bf!:(300+n),8),
              log!:(divide!:(timbf(round!:mt(i2bf!: factorial(300+n),8),
                  abs!: sq2bf!* symbolic algebraic bernoulli 300),
                times!:(admissable,round!:mt(i2bf!: factorial 300,8)),
                  8),8)),8);     % In which Chris approximates to 8 bits
                                 % and hopes to get away with it...
      scale := min - (1 + conv!:bf2i z);
      if scale < 0 then scale := 0;
      z0 := plubf(z,i2bf!: scale);

      nfac := round!:mt(i2bf!: factorial(n-1),c!:prec!:());
      zexp := texpt!:any(z0,n);
      result := plubf(divbf(nfac,zexp),
         divbf((nfac1 := timbf(i2bf!: n,nfac)),
            timbf(bftwo!*,(zexp1 := timbf(zexp,z0)))));
      nfac := nfac1; zexp := zexp1;

      nm1 := n-1; nm2 := n-2; rp := c!:prec!:();
      nfac := timbf(nfac, i2bf!: (n+1));
      kfac := bftwo!*; zexp := timbf(zexp,z0);
      zsq := timbf(z0,z0);

      partial := divbf(nfac,timbf(kfac,zexp));
      k := 2; orda := order!: admissable - 5;
      this := bfone!*;

      if null compute!-bernoulli then
         <<errorset!*('(load_package '(specfaux)), nil); nil>>;

      while greaterp!:(abs!: this, admissable) do
         << result := plubf(result,
               (this := timbf(sq2bf!* retrieve!*bern k,partial)));
            k := k + 2;
            partial := divide!:(timbf(partial,i2bf!:((nm2+k)*(nm1+k))),
               timbf(zsq,i2bf!:((k-1)*k)),rp);
            rp := order!: this - orda >>;

      result := times!:(signer,result);

      if scale neq 0 then
         << rescale := bfz!*;
            nfac := round!:mt(i2bf!: factorial n,c!:prec!:());
            for k := 1:scale do
               <<rescale := plus!:(rescale,timbf(nfac,texpt!:(z,-n-1)));
                  z := plubf(z,bfone!*) >>;
            result := plubf(result,times!:(signer,rescale)) >>;

      return mk!*sq !*f2q mkround result;
   end;


%
% algebraic procedure trigamma!*halves(x);
%
%     Applies a formula to derive the exact value of the trigamma
%     function at x where x = n+(1/2) for n = 1, 2, ...
%

algebraic procedure trigamma!*halves(x);
   begin integer prepre; scalar result, alglist!*;
      result := (1/2) * (pi ** 2) - (4 * (for k := 1:(round (x-(1/2)))
      	 sum ((2*k - 1) ** (-2))));
      return result;
   end;




%
% algebraic procedure zeta!*calc(s);
%
%     Calculate zeta(s). Only valid for repart(s) > 1.
%
%     This function uses the system !*primelist!* of the first
%     500 primes.  If the system variable disappears or changes,
%     this function is helpless.
%

algebraic procedure zeta!*calc(z);
   begin scalar result, admissable, primelist,
      	 partialpl, this, modify, spl, alglist!*;
      integer prepre, j, rflag, thisprime, nexti;
      share spl;
      prepre := precision(0);
      precision prepre + 3;
      admissable := (1 / (10 ** (prepre + 2)));

      symbolic (spl := !*primelist!*);
      primelist := {};
      result := 1; modify := 1;
      for k := 1:10 do
      	 << j := symbolic car spl;
      	    symbolic (spl := cdr spl);
      	    primelist := (j . primelist);
      	    modify := modify * (1 - (1 / (j**z))) >>;
      modify := 1 / modify;

      this := admissable + 1;
      if not symbolic cdr divide (j, 3) then j := j + 2;
      nexti := (if not symbolic cdr divide (j+1, 3) then 2 else 4);
      while ((abs this) > admissable) do
      	 << rflag := 1; partialpl := primelist;
      	    while ((partialpl neq {}) and rflag) do
      	       << thisprime := first partialpl;
      	       	  rflag := symbolic cdr divide(j, thisprime);
      	       	  partialpl := rest partialpl >>;
      	    if rflag then result := result + (this := (1 / (j**z)));
      	    j := j + nexti; nexti := 6 - nexti >>;
      result := result * modify;
      precision prepre;
      return result;
   end;


algebraic procedure zeta!*pos!*intcalc(m);
   (((-1)**m)*polygamma(m-1,3)/factorial(m-1)
      + 1 + (1/(2**m)));


algebraic procedure zeta!*error(z,terms);
   (((-1) ** (terms+2)) / ((terms+1) ** z));


algebraic procedure zeta!*general!*calc(z);
   begin scalar result, zp, admissable, z0;
      	 integer pre, k;
      pre := precision(0);
      admissable := algebraic symbolic
      	 (mk!*sq !*f2q mkround divide!:(bfone!*,i2bf!:(10 ** pre),8));
      if (z**2) < admissable
      then result := ((-1/2) - ((log(2*pi))*z)/2)
      else if pre < !!nfpd
      	   then begin scalar sstt, stt;
      	       	   sstt := (for k := 2:(pre-1) sum (k**(-z)));
      	       	   precision (!!nfpd + 2);
      	           z0 := z; zp := pre**(-z); stt := sstt + 1;
      	       	   result := algebraic symbolic
		     zeta!*general!*calc!*sub(z0,zp,admissable,pre,stt);
      	        end
	   else <<z0 := z; zp := pre**(-z);
		  result := algebraic symbolic
		   zeta!*general!*calc!*sub(z0,zp,admissable,pre,'())>>;
      precision pre;
      return result;
   end;


symbolic procedure zeta!*general!*calc!*sub(z,zp,admissable,pre,stt);
   begin scalar result, prere, this, fac, pre, zk1, zk2, logz;
      	 integer k;
 
      z := sq2bf!* z;
      zp := sq2bf!* zp;
      admissable := sq2bf!* admissable;

      if stt = nil then
      	 << result := bfone!*; k := 1;
      	    this := plus!:(admissable,bfone!*);
      	    while greaterp!: (abs!: this,admissable) and k < pre-1 do
      	       << k := k + 1;
      	       	  this := texpt!:any(i2bf!: k, minus!: z);
      	       	  result := plubf(result, this) >> >>
      else result := sq2bf!* stt;

      pre := i2bf!: pre;
      zk1 := plubf(z,bftwo!*); zk2 := plubf(z,bfone!*);
      result := plubf(result,
      	 timbf(zp,plubf(bfhalf!*,divbf(pre,difbf(z,bfone!*)))));
      fac := divbf(bfone!*,timbf(pre,pre));
      this := timbf(divbf(z,bftwo!*),divbf(zp,pre));
      result := plubf(result,divbf(this,i2bf!: 6));
      k := 4; prere := plubf(result,bfone!*);

      while greaterp!: (abs!: difbf(prere,result), admissable) do
      	 << this := divbf(timbf(this,timbf(fac,timbf(zk1,zk2))),
      	       	     	  i2bf!:(k*(k-1)));
      	    prere := result;
      	    result := plubf(result,timbf(
      	       sq2bf!* symbolic algebraic bernoulli!*calc k, this));
      	    zk1 := plus!:(zk1,bftwo!*);
      	    zk2 := plus!:(zk2,bftwo!*);
      	    k := k + 2; >>;

      return mk!*sq !*f2q mkround result;
   end;

algebraic array stieltjes (5);  % for use in raw zeta computations
algebraic array stf       (5);
algebraic array psi!*ld   (1);
algebraic (psi!*ld(0) := -1);   % precision at which last psi was calc'd
algebraic (psi!*ld(1) :=  0);   % lowest post-scale value acceptable at
                                % that precision


Stieltjes (0) := 0.577215664901532860606512$ % Euler's constant
Stieltjes (1) := -0.0728158233766$
Stieltjes (2) := -0.00968992187973$
Stieltjes (3) := 0.00206262773281$
Stieltjes (4) := 0.00250054826029$
Stieltjes (5) := 0.00427794456482$
Stf (0) := 1$
Stf (1) := 1$
Stf (2) := 2$
Stf (3) := 6$
Stf (4) := 24$
Stf (5) := 120$

algebraic procedure raw!*zeta(z);
   << z := z-1;
      1/z + (for m := 0:5 sum ((-1)**m * Stieltjes(m) * z**m / Stf(m)))
   >>;

endmodule;

end;



REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]