File r38/packages/eds/prolong.red artifact 71d776c45e part of check-in 3af273af29


module prolong;

% Prolonged systems, tableaux

% Author: David Hartley


fluid '(!*edsverbose !*edsdebug !*arbvars !*varopt !*groebopt
        !*solveinconsistent depl!* !*edssloppy pullback_maps);


% Grassmann bundle variety


put('grassmann_variety,'rtypefn,'getrtypecar);
put('grassmann_variety,'edsfn,'grassmannvariety);
flag('(grassmannvariety grassmannvarietysolution 
       grassmannvarietytorsion),'hidden);

symbolic procedure grassmannvariety s;
   % s:eds -> grassmannvariety:eds
   % Reduced Grassmann contact system together with Grassmann variety
   % conditions as one system with 0-forms
   begin scalar p,g,s0,v;
   if g := geteds(s,'grassmannvariety) then return g;
   s0 := closure s;
   g := gbsys s0;
   p := solvedpart pfaffpart eds_sys s0;
   % reduction in next lines ok since lpows g = prlkrns s0
   foreach f in setdiff(eds_sys s0,p) do
      v := union(foreach q in xcoeffs xreduce(f,eds_sys g) collect 
                    1 .* q .+ nil,v);
   g := augmentsys(g,append(v,p));
   puteds(s,'grassmannvariety,g);
   return g;
   end;


% Prolongation


put('prolong,'rtypefn,'quoteeds);
put('prolong,'edsfn,'prolongeds);


symbolic procedure prolongeds s;
   % s:eds -> prolongeds:xeds
   begin
   pullback_maps := makelist {};
   return
      if not edsp s  then typerr(s,'eds)
      else mkxeds makelist
      	 foreach x in prolong s join
	    if cdr x then {cdr x};
   end;


symbolic procedure prolong s;
   % s:eds -> prolong:list of tag.eds
   % where tag is one of
   %	prolonged	s was prolonged
   %	reduced		s was reduced
   %    failed          couldn't solve Grassmann variety conditions (eds
   %                    is {Grassmann system with variety conditions})
   %    inconsistent    prolongation is inconsistent
   % eds_ind s is preserved by prolong. Note the
   % heuristic to eliminate independent variables is incomplete.
   begin scalar g,v,s1;
   g := copyeds grassmannvariety s;
   updkordl edscob g;
   eds_sys g := setdiff(eds_sys g,scalarpart eds_sys g);
   v := decomposegrassmannvariety s;
   return if null v then
   << edsverbose("Prolongation inconsistent",nil,nil);
      eds_sys g := {!*k2pf 1};
      {'inconsistent . g} >>
   else foreach strata in v join
      if car strata = 'failed then
      << edsverbose("Prolongation failed - solution variety:",
		    cdr strata,'sq);
         {'failed . 
	    augmentsys(g,foreach q in cdr strata collect 1 .* q .+ nil)}
       >>
      else if car strata = 'base then
      << edsverbose("Reduction using new equations:",cdr strata,'rmap);
	 pullback_maps := append(pullback_maps,{!*rmap2a cdr strata});
	 s1 := edscall pullback0(s,cdr strata);
 	 if scalarpart eds_sys s1 then
	    s1 := edscall positiveeds s1;
	 if emptyedsp s1 then {'inconsistent . s1}
	 else if edsp s1 then {'reduced . s1}
	 else foreach s2 in getrlist s1 collect 'reduced . s2 >>
      else if car strata = 'fibre then
      << if cadr strata then
	    edsverbose("Prolongation using new equations:",
		       cdr strata,'rmap)
         else
            edsverbose("Prolongation (no new equations)",nil,nil);
	 pullback_maps := append(pullback_maps,{!*rmap2a cdr strata});
      	 s1 := edscall pullback0(g,cdr strata);
	 {'prolonged . s1} >>;
   end;


symbolic procedure decomposegrassmannvariety s;
   % s:eds -> decomposegrassmannvariety:list of tag.value
   % where tag.value is one of
   %	'fibre.rmap		s can be prolonged
   %	'base.rmap		s must be reduced
   %    'failed . list of sq    couldn't solve Grassmann variety
   %                            conditions
   %    'inconsistent.nil	Grassmann variety empty
   begin scalar g,v,c,b;
   g := grassmannvariety s;
   c := reverse setdiff(edscrd g,edsindcrd g);
   c := edsgradecoords(c,geteds(g,'jet0));
   % Allow for case where g has no fibre coordinates (s has finite type)
   if null setdiff(edscrd g,edscrd s) then c := {} . c;
   if semilinearp s then
      if v := grassmannvarietytorsion s then
	 if null(v := edssolvegraded(v,cdr c,cfrm_rsx eds_cfrm s)) 
	 then return {'inconsistent . nil}
	 else return foreach m in v collect
	    if car m then 'base . cdr m
	    else 'failed . cdr m
      else if v := partsolvegrassmannvariety s then return
      	 {'fibre . !*map2rmap 
	    foreach x in car v join if not(car x memq cadr v) then
	       {car x . mk!*sq subsq(simp!* cdr x,caddr v)}}
      else errdhh "Bad solution to semilinear system"
   else % not semilinearp s
   << v := foreach f in scalarpart eds_sys g collect lc f;
      if null(v := edssolvegraded(v,c,cfrm_rsx eds_cfrm s)) 
      then return {'inconsistent . nil}
      else return foreach m in v collect
	 if null car m then 'failed . cdr m
	 else if (b := foreach s in cadr m join
 	       	     	  if not memq(car s,car c) then {s}) then
	    'base . {b,for each p in caddr m
			  join if freeofl(p,car c) then {p}}
	 else 'fibre . cdr m; >>;
   end;


% Special routines for semilinear systems


symbolic procedure partsolvegrassmannvariety s;
   % s:eds -> partsolvegrassmannvariety:{map,list of kernel,map}
   % Partly solves the variety equations for a linear system s.
   % The "solution" is returned as from edspartsolve.
   begin scalar v,c;
   if v := geteds(s,'grassmannvarietysolution) then return v;
   v := grassmannvariety s;
   c := reverse setdiff(edscrd v,edscrd s);
   v := foreach f in scalarpart eds_sys v collect lc f;   
   v := edspartsolve(v,c);
   puteds(s,'grassmannvarietysolution,v);
   return v;
   end;


put('dim_grassmann_variety,'simpfn,'dimgrassmannvarietyeval);

symbolic procedure dimgrassmannvarietyeval u;
   % u:{eds}|{eds,sys} -> dimgrassmannvarietyeval:sq
   if length u < 1 or length u > 2 then
      rerror(eds,000,
	     "Wrong number of arguments to dim_grassmann_variety")
   else if edsp car(u := revlis u) then
      edscall dimgrassmannvariety(car u,if cdr u then !*a2sys cadr u)
	 ./ 1
   else typerr(car u,"EDS");


symbolic procedure dimgrassmannvariety(s,x);
   % s:eds, x:sys -> dimgrassmannvariety:int
   begin scalar v,c;
   if not quasilinearp s then
      if null x then
      	 rerror(eds,000,"Integral element required for nonlinear EDS")
      else
      	 s := linearise(s,x);
   v := grassmannvariety s;
   c := length setdiff(edscrd v,edscrd s);
   % Treat quasilinear and semilinear systems the same
   % Will storing the solution etc cause trouble for q-l. s?
   v := partsolvegrassmannvariety s;
   c := c - foreach x in car v sum
      	       if car x memq cadr v then 0 else 1;
   return c;
   end;


put('torsion,'rtypefn,'quotelist);
put('torsion,'listfn,'torsioneval);

symbolic procedure torsioneval(u,v);
   % u:{eds}, v:bool -> torsioneval:rlist
   if not edscall semilinearp(u := reval car u) then
      rerror(eds,000,"TORSION available for semi-linear systems only")
   else
      makelist for each q in edscall grassmannvarietytorsion u
		  collect !*q2a1(q,v);


symbolic procedure grassmannvarietytorsion s;
   % s:eds -> grassmannvarietytorsion:list of sf
   begin scalar v;
   if v := geteds(s,'grassmannvarietytorsion) then return v;
   v := partsolvegrassmannvariety s;
   v := foreach x in car v join
      	   if car x memq cadr v and numr
      	   << x := addsq(negsq !*k2q car x,simp!* cdr x);
	      x := subsq(x,caddr v) >>
      	   then {x};
   puteds(s,'grassmannvarietytorsion,v);
   return v;
   end;

endmodule;

end;


REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]