File r36/src/symaux.red artifact 0a631f39c9 part of check-in 30d10c278c


module symaux;  %  Data for symmetry package.

% Author: Karin Gatermann <Gatermann@sc.ZIB-Berlin.de>.

create!-package('(symaux
                  symatvec
                  symcheck
                  symchrep
                  symhandl
                  sympatch
                  symwork),
                '(contrib symmetry));

load!-package 'matrix;

algebraic(operator @);
algebraic( infix @);
algebraic( precedence @,*);

symbolic procedure give!_groups (u);
% prints the elements of the abstract group
begin
  return mk!+outer!+list(get!*available!*groups());
end;

put('availablegroups,'psopfn,'give!_groups);


symbolic procedure print!_group (groupname);
% prints the elements of the abstract group
begin
scalar g;
  if length(groupname)>1 then rederr("too many arguments");
  if length(groupname)<1 then rederr("group as argument missing");
  g:=reval car groupname;
  if available!*p(g) then
  return alg!:print!:group(g);
end;

put('printgroup,'psopfn,'print!_group);

symbolic procedure print!_generators (groupname);
% prints the generating elements of the abstract group
begin
scalar g;
  if length(groupname)>1 then rederr("too many arguments");
  if length(groupname)<1 then rederr("group as argument missing");
  g:=reval car groupname;
  if  available!*p(g) then
  return alg!:generators(g);
end;

put('generators,'psopfn,'print!_generators);


symbolic procedure character!_table (groupname);
% prints the characters of the group
begin
scalar g;
  if length(groupname)>1 then rederr("too many arguments");
  g:=reval car groupname;
  if available!*p(g) then
  return alg!:characters(g);
end;

put('charactertable,'psopfn,'character!_table);

symbolic procedure character!_nr (groupname);
% prints the characters of the group
begin
scalar group,nr,char1;
  if length(groupname)>2 then rederr("too many arguments");
  if length(groupname)<2 then rederr("group or number missing");
  group:=reval car groupname;
  nr:=reval cadr groupname;
  if not(available!*p(group)) then
     rederr("no information upon group available");
  if not(irr!:nr!:p(nr,group)) then
       rederr("no character with this number");
  if !*complex then
     char1:=get!*complex!*character(group,nr) else
     char1:=get!*real!*character(group,nr);
  return alg!:print!:character(char1);
end;

put('characternr,'psopfn,'character!_nr);

symbolic procedure irreducible!_rep!_table (groupname);
% prints the irreducible representations of the group
begin
scalar g;
  if length(groupname)>1 then rederr("too many arguments");
  if length(groupname)<1 then rederr("group missing");
  g:=reval car groupname;
  if available!*p(g) then
  return alg!:irr!:reps(g);
end;

put('irreduciblereptable,'psopfn,'irreducible!_rep!_table);

symbolic procedure irreducible!_rep!_nr (groupname);
% prints the irreducible representations of the group
begin
scalar g,nr;
  if length(groupname)>2 then rederr("too many arguments");
  if length(groupname)<2 then rederr("group or number missing");
  g:=reval car groupname;
  if not(available!*p(g)) then
     rederr("no information upon group available");
  nr:=reval cadr groupname;
  if not(irr!:nr!:p(nr,g)) then
       rederr("no irreducible representation with this number");
  if !*complex then
       return
    alg!:print!:rep(get!*complex!*irreducible!*rep(g,nr))
       else return
    alg!:print!:rep(get!*real!*irreducible!*rep(g,nr));
end;

put('irreduciblerepnr,'psopfn,'irreducible!_rep!_nr);

symbolic procedure canonical!_decomposition(representation);
% computes the canonical decomposition of the given representation
begin
scalar repr;
   if length(representation)>1 then rederr("too many arguments");
   repr:=reval car representation;
   if representation!:p(repr) then
   return alg!:can!:decomp(mk!_internal(repr));
end;

put('canonicaldecomposition,'psopfn,'canonical!_decomposition);

symbolic procedure sym!_character(representation);
% computes the character of the given representation
begin
scalar repr;
   if length(representation)>1 then rederr("too many arguments");
   if length(representation)<1 then
   rederr("representation list missing");
   repr:=reval car representation;
   if representation!:p(repr) then
   return alg!:print!:character(mk!_character(mk!_internal(repr))) else
     rederr("that's no representation");
end;


put('character,'psopfn,'sym!_character);

symbolic procedure symmetry!_adapted!_basis (arg);
% computes the first part of the symmetry adapted bases of
% the nr-th component
% arg = (representation,nr)
begin
scalar repr,nr,res;
   if length(arg)>2 then rederr("too many arguments");
   if length(arg)<2 then rederr("group or number missing");
   repr:=reval car arg;
   nr:=reval cadr arg;
   if representation!:p(repr) then
         repr:=mk!_internal(repr) else
         rederr("that's no representation");
   if irr!:nr!:p(nr,get!_group!_in(repr)) then
       <<
          if not(null(mk!_multiplicity(repr,nr))) then
             res:= mk!+outer!+mat(mk!_part!_sym!_all(repr,nr))
             else
             res:=nil;
       >> else
        rederr("wrong number of an irreducible representation");
   return res;
end;

put('symmetrybasis,'psopfn,'symmetry!_adapted!_basis);

symbolic procedure symmetry!_adapted!_basis!_part (arg);
% computes the first part of the symmetry adapted bases
% of the nr-th component
% arg = (representation,nr)
begin
scalar repr,nr,res;
   if length(arg)>2 then rederr("too many arguments");
   if length(arg)<2 then rederr("group or number missing");
   repr:=reval car arg;
   nr:=reval cadr arg;
   if representation!:p(repr) then
         repr:=mk!_internal(repr) else
         rederr("that's no representation");
   if irr!:nr!:p(nr,get!_group!_in(repr)) then
       <<
          if not(null(mk!_multiplicity(repr,nr))) then
             res:= mk!+outer!+mat(mk!_part!_sym1(repr,nr))
             else
             res:=nil;
       >> else
        rederr("wrong number of an irreducible representation");
   return res;
end;

put('symmetrybasispart,'psopfn,'symmetry!_adapted!_basis!_part);

symbolic procedure symmetry!_bases (representation);
% computes the complete symmetry adapted basis
begin
scalar repr,res;
   if length(representation)>1 then rederr("too many arguments");
   if length(representation)<1 then rederr("representation missing");
   repr:=reval car representation;
   if representation!:p(repr) then
     <<
         res:= mk!+outer!+mat(mk!_sym!_basis(mk!_internal(repr)));
     >> else
       rederr("that's no representation");
    return res;
end;

put('allsymmetrybases,'psopfn,'symmetry!_bases);

symbolic procedure sym!_diagonalize (arg);
% diagonalizes a matrix with respect to a given representation
begin
scalar repr,matrix1;
   if (length(arg)>2) then rederr("too many arguments");
   if (length(arg)<2) then rederr("representation or matrix missing");
   repr:=reval cadr arg;
   matrix1:=reval (car arg);
   if alg!+matrix!+p(matrix1) then
        matrix1:=mk!+inner!+mat(matrix1)
        else
        rederr("first argument must be a matrix");
   if representation!:p(repr) then
       repr:=mk!_internal(repr) else
       rederr("that's no representation");
   if symmetry!:p(matrix1,repr) then
   return mk!+outer!+mat(mk!_diagonal(
          matrix1,repr)) else
   rederr("matrix has not the symmetry of this representation");
end;

put('diagonalize,'psopfn,'sym!_diagonalize);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% function to add new groups to the database by the user
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

symbolic procedure set!_generators!_group (arg);
% a group is generated by some elements
begin
scalar group, generators,relations,rel;
   if length(arg)>3 then rederr("too many arguments");
   if length(arg)<2 then
      rederr("group identifier or generator list missing");
   group:=reval car arg;
   generators:=reval cadr arg;
   if length(arg)=3 then
          relations:=reval caddr arg else
          relations:=nil;
   if not(idp(group)) then
        rederr("first argument must be a group identifier");
   generators:=mk!+inner!+list(generators);
   if not(identifier!:list!:p(generators)) then
     rederr("second argument must be a list of generator identifiers")
        else set!*generators(group,generators);
   relations:=mk!_relation!_list(relations);
   for each rel in relations do
       if not(relation!:list!:p(group,rel)) then
          rederr("equations in generators are demanded");
   set!*relations(group,relations);
   writepri("setgenerators finished",'only);
end;

put('setgenerators,'psopfn,'set!_generators!_group);

symbolic procedure set!_elements(arg);
% each element<>id of a group has a representation
% as product of generators
% the identity is called id
begin
scalar elemreps,replist,elems,group;
   if length(arg)>2 then rederr("too many arguments");
   if length(arg)<2 then
 rederr("missing group or list with group elements with generators ");
   group:=reval car arg;
   if not(idp(group)) then
        rederr("first argument must be a group identifier");
   elemreps:=reval cadr arg;
   elemreps:=mk!_relation!_list(elemreps);
   for each replist in elemreps do
     if not(generator!:list!:p(group,cadr replist)) then
       rederr("group elements should be represented in generators");
   for each replist in elemreps do
     if not((length(car replist)=1) and idp(caar replist)) then
       rederr("first must be one group element");
   elems:= for each replist in elemreps collect caar replist;
   elems:=append(list('id),elems);
   set!*elems!*group(group,elems);
   set!*elemasgen(group,elemreps);
   writepri("setelements finished",'only);
end;

put('setelements,'psopfn,'set!_elements);

symbolic procedure set!_group!_table (arg);
% a group table gives the result of the product of two elements
begin
scalar table,group,z,s;
   if length(arg)>2 then rederr("too many arguments");
   if length(arg)<2 then
      rederr("missing group or group table as a matrix ");
   group:=reval car arg;
   if not(idp(group)) then
        rederr("first argument must be a group identifier");
   table:=reval cadr arg;
   if alg!+matrix!+p(table) then
       table:=mk!+inner!+mat(table);
   table:=for each z in table collect
        for each s in z collect prepsq(s);
   if group!:table!:p(group,table) then
     <<
        set!*grouptable(group,table);
        set!*inverse(group,mk!*inverse!*list(table));
        set!*group(group,mk!*equiclasses(table));
        set!*storing(group);
     >> else rederr("table is not a group table");
   writepri("setgrouptable finished",'only);
end;

put('setgrouptable,'psopfn,'set!_group!_table);

symbolic procedure set!_real!_rep(arg);
% store the real irreducible representations
begin
scalar replist,type;
   if length(arg)>2 then rederr("too many arguments");
   if length(arg)<2 then
      rederr("representation or type missing");
   replist:=reval car arg;
   type:=reval cadr arg;
   if (not(type= 'realtype) and not(type = 'complextype)) then
       rederr("only real or complex types possible");
   if get!*order(get!_group!_out(replist))=0 then
         rederr("elements of the groups must be set first");
   if representation!:p(replist) then
         replist:=(mk!_internal(replist));
   set!*representation(get!_group!_in(replist),
          append(list(type),cdr replist),'real);
   writepri("Rsetrepresentation finished",'only);
end;

put('rsetrepresentation,'psopfn,'set!_real!_rep);

symbolic procedure set!_complex!_rep(arg);
% store the complex irreducible representations
begin
scalar replist;
   if length(arg)>1 then rederr("too many arguments");
   if length(arg)<1 then
      rederr("representation missing");
   replist:=reval car arg;
   if get!*order(get!_group!_out(replist))=0 then
         rederr("elements of the groups must be set first");
   if representation!:p(replist) then
         replist:=(mk!_internal(replist));
   set!*representation(get!_group!_in(replist),cdr replist,'complex);
   writepri("Csetrepresentation finished",'only);
end;

put('csetrepresentation,'psopfn,'set!_complex!_rep);

symbolic procedure mk!_available(arg);
% group is only then made available, if all information was given
begin
scalar group;
   if length(arg)>1 then rederr("too many arguments");
   if length(arg)<1 then
      rederr("group identifier missing");
   group:=reval car arg;
   if check!:complete!:rep!:p(group) then
       set!*available(group);
   writepri("setavailable finished",'only);
end;

put('setavailable,'psopfn,'mk!_available);

symbolic procedure update!_new!_group (arg);
% stores the user defined new abstract group in a file
begin
scalar group;
   if length(arg)>2 then rederr("too many arguments");
   if length(arg)<2 then
      rederr("group or filename missing");
   group:=reval car arg;
   if available!*p(group) then write!:to!:file(group,reval cadr arg);
   writepri("storegroup finished",'only);
end;

put('storegroup,'psopfn,'update!_new!_group);

procedure loadgroups(fname);
% loads abstract groups from a file which was created from a user
% by newgroup and updategroup
begin
  in fname;
  write"group loaded";
end;
endmodule;


module symatvec;

% Symmetry

% Author : Karin Gatermann
%         Konrad-Zuse-Zentrum fuer
%         Informationstechnik Berlin
%         Heilbronner Str. 10
%         W-1000 Berlin 31
%         Germany
%         Email: Gatermann@sc.ZIB-Berlin.de


% symatvec.red

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  functions for matrix vector operations
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

symbolic procedure gen!+can!+bas(dimension);
% returns the canonical basis of R^dimension as a vector list
begin
scalar eins,nullsq,i,j,ll;
   eins:=(1 ./ 1);
   nullsq:=(nil ./ 1);
   ll:= for i:=1:dimension collect
           for j:=1:dimension collect
              if i=j then eins else nullsq;
   return ll;
end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  matrix functions
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

symbolic procedure alg!+matrix!+p(mat1);
% returns true if the matrix is a matrix from algebraic level
begin
scalar len,elem;
  if length(mat1)<1 then rederr("should be a matrix");
  if not(car (mat1) = 'mat) then rederr("should be a matrix");
  mat1:=cdr mat1;
  if length(mat1)<1 then rederr("should be a matrix");
  len:=length(car mat1);
  for each elem in cdr mat1 do
    if not(length(elem)=len) then rederr("should be a matrix");
  return t;
end;

symbolic procedure matrix!+p(mat1);
% returns true if the matrix is a matrix in internal structure
begin
scalar dimension,z,res;
  if length(mat1)<1 then return nil;
  dimension:=length(car mat1);
  res:=t;
  for each z in cdr mat1 do
    if not(dimension = length(z)) then res:=nil;
  return res;
end;

symbolic procedure squared!+matrix!+p(mat1);
% returns true if the matrix is a matrix in internal structure
begin
  if (matrix!+p(mat1) and (get!+row!+nr(mat1) = get!+col!+nr(mat1)))
      then return t;
end;

symbolic procedure equal!+matrices!+p(mat1,mat2);
% returns true if the matrices are equal ( internal structure)
begin
scalar s,z,helpp,mathelp,sum,rulesum,rule1,rule2;
   if (same!+dim!+squared!+p(mat1,mat2)) then
       <<
           mathelp:=
             mk!+mat!+plus!+mat(mat1,
                 mk!+scal!+mult!+mat((-1 ./ 1),mat2));
           sum:=(nil ./ 1);
           for each z in mathelp do
                for each s in z do
                  if !*complex then
                     sum:=addsq(sum,multsq(s,mk!+conjugate!+sq s)) else
                     sum:=addsq(sum,multsq(s,s));
      %      print!-sq(sum);
      rulesum:=change!+sq!+to!+algnull(sum);
      if rulesum = 0 then helpp:=t else helpp:=nil;
 %     print!-sq(simp rulesum);
%           if null(numr(simp prepsq(sum))) then helpp:=t
% else helpp:=nil;
       >> else helpp:=nil;
   return helpp;
end;

symbolic procedure get!+row!+nr(mat1);
% returns the number of rows
begin
   return length(mat1);
end;

symbolic procedure get!+col!+nr(mat1);
% returns the number of columns
begin
   return length(car mat1);
end;

symbolic procedure get!+mat!+entry(mat1,z,s);
% returns the matrix element in row z and column s
begin
   return nth(nth(mat1,z),s);
end;

symbolic procedure same!+dim!+squared!+p(mat1,mat2);
% returns true if the matrices are both squared matrices
% of the same dimension
% (internal structur)
begin
  if (squared!+matrix!+p(mat1) and squared!+matrix!+p(mat2) and
       (get!+row!+nr(mat1) = get!+row!+nr(mat1)))
          then return t;
end;

symbolic procedure mk!+transpose!+matrix(mat1);
% returns the transposed matrix (internal structure)
begin
scalar z,s,tpmat1;
  if not(matrix!+p(mat1)) then rederr("no matrix in transpose");
  tpmat1:=for z:=1:get!+col!+nr(mat1) collect
           for s:=1:get!+row!+nr(mat1) collect
                get!+mat!+entry(mat1,s,z);
  return tpmat1
end;

symbolic procedure mk!+conjugate!+matrix(mat1);
% returns the matrix with conjugate elements (internal structure)
begin
scalar z,s,tpmat1;
  if not(matrix!+p(mat1)) then rederr("no matrix in conjugate matrix");
  tpmat1:=for z:=1:get!+row!+nr(mat1) collect
           for s:=1:get!+col!+nr(mat1) collect
              mk!+conjugate!+sq(get!+mat!+entry(mat1,z,s));
  return tpmat1
end;

symbolic procedure mk!+hermitean!+matrix(mat1);
% returns the transposed matrix (internal structure)
begin
   if !*complex then
   return mk!+conjugate!+matrix(mk!+transpose!+matrix(mat1)) else
   return mk!+transpose!+matrix(mat1);
end;

symbolic procedure unitarian!+p(mat1);
% returns true if matrix is orthogonal or unitarian resp.
begin
scalar mathermit,unitmat1;
  mathermit:=mk!+mat!+mult!+mat(mk!+hermitean!+matrix(mat1),mat1);
  unitmat1:=mk!+unit!+mat(get!+row!+nr(mat1));
  if equal!+matrices!+p(mathermit,unitmat1) then return t;
end;

symbolic procedure mk!+mat!+mult!+mat(mat1,mat2);
% returns a matrix= matrix1*matrix2 (internal structure)
begin
scalar dims1,dimz1,dims2,s,z,res,sum,k;
  if not(matrix!+p(mat1)) then rederr("no matrix in mult");
  if not(matrix!+p(mat2)) then rederr("no matrix in mult");
  dims1:=get!+col!+nr(mat1);
  dimz1:=get!+row!+nr(mat1);
  dims2:=get!+col!+nr( mat2);
  if not(dims1 = get!+row!+nr(mat2)) then
     rederr("matrices can not be multiplied");
  res:=for z:=1:dimz1 collect
         for s:=1:dims2 collect
           <<
              sum:=(nil ./ 1);
              for k:=1:dims1 do
               sum:=addsq(sum,
                      multsq(
                       get!+mat!+entry(mat1,z,k),
                       get!+mat!+entry(mat2,k,s)
                             )
                          );
              sum:=subs2 sum where !*sub2=t;
              sum
           >>;
   return res;
end;

symbolic procedure mk!+mat!+plus!+mat(mat1,mat2);
% returns a matrix= matrix1 + matrix2 (internal structure)
begin
scalar dims,dimz,s,z,res,sum;
  if not(matrix!+p(mat1)) then rederr("no matrix in add");
  if not(matrix!+p(mat2)) then rederr("no matrix in add");
  dims:=get!+col!+nr(mat1);
  dimz:=get!+row!+nr(mat1);
  if not(dims = get!+col!+nr(mat2)) then
          rederr("wrong dimensions in add");
  if not(dimz = get!+row!+nr(mat2)) then
          rederr("wrong dimensions in add");
  res:=for z:=1:dimz collect
          for s:=1:dims collect
           <<
            sum:=addsq(
                   get!+mat!+entry(mat1,z,s),
                   get!+mat!+entry(mat2,z,s)
                 );
              sum:=subs2 sum where !*sub2=t;
              sum
           >>;
  return res;
end;

symbolic procedure mk!+mat!*mat!*mat(mat1,mat2,mat3);
% returns a matrix= matrix1*matrix2*matrix3 (internal structure)
begin
scalar res;
  res:= mk!+mat!+mult!+mat(mat1,mat2);
  return mk!+mat!+mult!+mat(res,mat3);
end;

symbolic procedure add!+two!+mats(mat1,mat2);
% returns a matrix=( matrix1, matrix2 )(internal structure)
begin
scalar dimz,z,res;
  if not(matrix!+p(mat1)) then rederr("no matrix in add");
  if not(matrix!+p(mat2)) then rederr("no matrix in add");
  dimz:=get!+row!+nr(mat1);
  if not(dimz = get!+row!+nr(mat2)) then rederr("wrong dim in add");
  res:=for z:=1:dimz collect
      append(nth(mat1,z),nth(mat2,z));
  return res;
end;

symbolic procedure mk!+scal!+mult!+mat(scal1,mat1);
% returns a matrix= scalar*matrix (internal structure)
begin
scalar res,z,s,prod;
  if not(matrix!+p(mat1)) then rederr("no matrix in add");
  res:=for each z in mat1 collect
         for each s in z collect
           <<
              prod:=multsq(scal1,s);
              prod:=subs2 prod where !*sub2=t;
              prod
           >>;
  return res;
end;

symbolic procedure mk!+trace(mat1);
% returns the trace of the matrix (internal structure)
begin
scalar spurx,s;
  if not(squared!+matrix!+p(mat1)) then
          rederr("no square matrix in add");
  spurx :=(nil ./ 1);
  for s:=1:get!+row!+nr(mat1) do
     spurx :=addsq(spurx,get!+mat!+entry(mat1,s,s));
   spurx :=subs2 spurx where !*sub2=t;
  return spurx
end;

symbolic procedure mk!+block!+diagonal!+mat(mats);
% returns a blockdiagonal matrix from
% a list of matrices (internal structure)
begin
  if length(mats)<1 then rederr("no list in mkdiagonalmats");
  if length(mats)=1 then return car mats else
     return fill!+zeros(car mats,mk!+block!+diagonal!+mat(cdr(mats)));
end;

symbolic procedure fill!+zeros(mat1,mat2);
% returns a blockdiagonal matrix from 2 matrices (internal structure)
begin
scalar nullmat1,nullmat2;
  nullmat1:=mk!+null!+mat(get!+row!+nr(mat2),get!+col!+nr(mat1));
  nullmat2:=mk!+null!+mat(get!+row!+nr(mat1),get!+col!+nr(mat2));
  return append(add!+two!+mats(mat1,nullmat2),
                    add!+two!+mats(nullmat1,mat2));
end;

symbolic procedure mk!+outer!+mat(innermat);
% returns a matrix for algebraic level
begin
 scalar res,s,z;
 if not(matrix!+p(innermat)) then rederr("no matrix in mkoutermat");
 res:= for each z in innermat collect
        for each s in z collect
            prepsq s;
 return append(list('mat),res);
end;

symbolic procedure mk!+inner!+mat(outermat);
% returns a matrix in internal structure
begin
   scalar res,s,z;
   res:= for each z in cdr outermat collect
          for each s in z collect
             simp s;
   if matrix!+p(res) then return res else
        rederr("incorrect input in mkinnermat");
end;

symbolic procedure mk!+resimp!+mat(innermat);
% returns a matrix in internal structure
begin
   scalar res,s,z;
   res:= for each z in innermat collect
          for each s in z collect
             resimp s;
   return res;
end;

symbolic procedure mk!+null!+mat(dimz,dims);
% returns a matrix of zeros in internal structure
begin
scalar nullsq,s,z,res;
   nullsq:=(nil ./ 1);
   res:=for z:=1:dimz collect
           for s:=1:dims collect  nullsq;
  return res;
end;

symbolic procedure mk!+unit!+mat(dimension);
% returns a squared unit matrix in internal structure
begin
   return gen!+can!+bas(dimension);
end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  vector functions
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

symbolic procedure vector!+p(vector1);
% returns the length of a vector
% vector -- list of sqs
begin
  if length(vector1)>0 then return t;
end;

symbolic procedure get!+vec!+dim(vector1);
% returns the length of a vector
% vector -- list of sqs
begin
  return length(vector1);
end;

symbolic procedure get!+vec!+entry(vector1,elem);
% returns the length of a vector
% vector -- list of sqs
begin
  return nth(vector1,elem);
end;

symbolic procedure mk!+mat!+mult!+vec(mat1,vector1);
% returns a vector= matrix*vector (internal structure)
begin
scalar z;
  return for each z in mat1 collect
           mk!+real!+inner!+product(z,vector1);
end;

symbolic procedure mk!+scal!+mult!+vec(scal1,vector1);
% returns a vector= scalar*vector (internal structure)
begin
scalar entry,res,h;
  res:=for each entry in vector1 collect
     <<
        h:=multsq(scal1,entry);
        h:=subs2 h where !*sub2=t;
        h
     >>;
  return res;
end;

symbolic procedure mk!+vec!+add!+vec(vector1,vector2);
% returns a vector= vector1+vector2 (internal structure)
begin
scalar ent,res,h;
  res:=for ent:=1:get!+vec!+dim(vector1) collect
       <<
         h:= addsq(get!+vec!+entry(vector1,ent),
                get!+vec!+entry(vector2,ent));
         h:=subs2 h where !*sub2=t;
         h
       >>;
  return res;
end;

symbolic procedure mk!+squared!+norm(vector1);
% returns a scalar= sum vector_i^2 (internal structure)
begin
   return mk!+inner!+product(vector1,vector1);
end;

symbolic procedure my!+nullsq!+p(scal);
% returns true, if ths sq is zero
begin
   if null(numr( scal)) then return t;
end;

symbolic procedure mk!+null!+vec(dimen);
% returns a vector of zeros
begin
scalar nullsq,i,res;
   nullsq:=(nil ./ 1);
   res:=for i:=1:dimen collect nullsq;
   return res;
end;

symbolic procedure mk!+conjugate!+vec(vector1);
% returns a vector of zeros
begin
scalar z,res;
   res:=for each z in vector1  collect mk!+conjugate!+sq(z);
   return res;
end;

symbolic procedure null!+vec!+p(vector1);
% returns a true, if vector is the zero vector
begin
    if my!+nullsq!+p(mk!+squared!+norm(vector1)) then
       return t;
end;

symbolic procedure mk!+normalize!+vector(vector1);
% returns a normalized vector (internal structure)
begin
scalar scalo,vecres;
  scalo:=simp!* {'sqrt, mk!*sq(mk!+squared!+norm(vector1))};
  if my!+nullsq!+p(scalo) then
     vecres:= mk!+null!+vec(get!+vec!+dim(vector1)) else
      <<
         scalo:=simp prepsq scalo;
         scalo:=quotsq((1 ./ 1),scalo);
         vecres:= mk!+scal!+mult!+vec(scalo,vector1);
      >>;
  return vecres;
end;

symbolic procedure mk!+inner!+product(vector1,vector2);
% returns the inner product of vector1 and vector2 (internal structure)
begin
scalar z,sum,vec2;
  if not(get!+vec!+dim(vector1) = get!+vec!+dim(vector2)) then
        rederr("wrong dimensions in innerproduct");
  sum:=(nil ./ 1);
  if !*complex then vec2:=mk!+conjugate!+vec(vector2) else
    vec2:=vector2;
  for z:=1:get!+vec!+dim(vector1) do
      sum:=addsq(sum,multsq(
            get!+vec!+entry(vector1,z),
            get!+vec!+entry(vec2,z)
                           )
                );
  sum:=subs2 sum where !*sub2=t;
  return sum;
end;

symbolic procedure mk!+real!+inner!+product(vector1,vector2);
% returns the inner product of vector1 and vector2 (internal structure)
begin
scalar z,sum;
  if not(get!+vec!+dim(vector1) = get!+vec!+dim(vector2)) then
        rederr("wrong dimensions in innerproduct");
  sum:=(nil ./ 1);
  for z:=1:get!+vec!+dim(vector1) do
      sum:=addsq(sum,multsq(
            get!+vec!+entry(vector1,z),
            get!+vec!+entry(vector2,z)
                           )
                );
  sum:=subs2 sum where !*sub2=t;
  return sum;
end;

symbolic procedure mk!+gram!+schmid(vectorlist,vector1);
% returns a vectorlist of orthonormal vectors
% assumptions: vectorlist is orthonormal basis, internal structure
begin
scalar i,orthovec,scalo,vectors1;
  orthovec:=vector1;
  for i:=1:(length(vectorlist)) do
     <<
       scalo:= negsq(mk!+inner!+product(orthovec,nth(vectorlist,i)));
       orthovec:=mk!+vec!+add!+vec(orthovec,
          mk!+scal!+mult!+vec(scalo,nth(vectorlist,i)));
     >>;
  orthovec:=mk!+normalize!+vector(orthovec);
  if null!+vec!+p(orthovec) then
     vectors1:=vectorlist else
     vectors1:=add!+vector!+to!+list(orthovec,vectorlist);
  return vectors1
end;

symbolic procedure gram!+schmid(vectorlist);
% returns a vectorlist of orthonormal vectors
begin
scalar ortholist,i;
  if length(vectorlist)<1 then rederr("error in Gram Schmid");
  if vector!+p(car vectorlist) then
      ortholist:=nil
        else rederr("strange in Gram-Schmid");
  for i:=1:length(vectorlist) do
        ortholist:=mk!+gram!+schmid(ortholist,nth(vectorlist,i));
  return ortholist;
end;

symbolic procedure add!+vector!+to!+list(vector1,vectorlist);
% returns a list of vectors consisting of vectorlist
% and the vector1 at the end
% internal structure
begin
    return append(vectorlist,list(vector1));
end;

symbolic procedure mk!+internal!+mat(vectorlist);
% returns a matrix consisting of columns
% equal to the vectors in vectorlist
% internal structure
begin
  return mk!+transpose!+matrix(vectorlist);
end;

symbolic procedure mat!+veclist(mat1);
% returns a vectorlist consisting of the columns of the matrix
% internal structure
begin
  return mk!+transpose!+matrix(mat1);
end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% some useful functions
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

symbolic procedure change!+sq!+to!+int(scal1);
% scal1 -- sq which is an integer
% result is a nonnegative integer
begin
  scalar nr;
  nr:=simp!* prepsq scal1;
  if (denr(nr) = 1) then return numr(nr) else
    rederr("no integer in change!+sq!+to!+int");
end;

symbolic procedure change!+int!+to!+sq(scal1);
% scal1 --  integer for example 1 oder 2 oder 3
% result is a sq
begin
  return (scal1 ./ 1);
end;

symbolic procedure change!+sq!+to!+algnull(scal1);
begin
scalar rulesum,storecomp;
           if !*complex then
              <<
                 storecomp:=t;
                 off complex;
              >> else
              <<
                 storecomp:=nil;
              >>;
          rulesum:=evalwhereexp ({'(list (list
 (replaceby
   (cos (!~ x))
   (times
      (quotient 1 2)
 (plus (expt e (times i (!~ x))) (expt e (minus (times i (!~ x))))) ))
 (replaceby
   (sin (!~ x))
   (times
      (quotient 1 (times 2 i))
 (difference (expt e (times i (!~ x)))
      (expt e (minus (times i (!~ x))))) ))

))
, prepsq(scal1)});
  rulesum:=reval rulesum;
  if storecomp then on complex;
 % print!-sq(simp (rulesum));
  return rulesum;
end;

symbolic procedure mk!+conjugate!+sq(mysq);
begin
    return conjsq(mysq);
 %   return subsq(mysq,'(( i . (minus i))));
end;

symbolic procedure mk!+equation(arg1,arg2);
begin
  return list('equal,arg1,arg2);
end;

symbolic procedure outer!+equation!+p(outerlist);
begin
    if eqcar(outerlist, 'equal) then return t
end;

symbolic procedure mk!+outer!+list(innerlist);
begin
  return append (list('list),innerlist)
end;

symbolic procedure mk!+inner!+list(outerlist);
begin
   if outer!+list!+p(outerlist) then return cdr outerlist;
end;

symbolic procedure outer!+list!+p(outerlist);
begin
  if eqcar(outerlist, 'list) then return t
end;

symbolic procedure equal!+lists!+p(ll1,ll2);
begin
  return (list!+in!+list!+p(ll1,ll2) and list!+in!+list!+p(ll2,ll1));
end;

symbolic procedure list!+in!+list!+p(ll1,ll2);
begin
  if length(ll1)=0 then return t else
       return (memq(car ll1,ll2) and list!+in!+list!+p(cdr ll1,ll2));
end;

symbolic procedure print!-matrix(mat1);
begin
  writepri (mkquote mk!+outer!+mat(mat1),'only);
end;

symbolic procedure print!-sq(mysq);
begin
  writepri (mkquote prepsq(mysq),'only);
end;

endmodule;


module symcheck;
%
% Symmetry Package
%
% Author : Karin Gatermann
%         Konrad-Zuse-Zentrum fuer
%         Informationstechnik Berlin
%         Heilbronner Str. 10
%         W-1000 Berlin 31
%         Germany
%         Email: Gatermann@sc.ZIB-Berlin.de


% symcheck.red

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  check user input -- used by functions in sym_main.red
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

symbolic procedure representation!:p(rep);
% returns true, if rep is a representation
begin
scalar group,elem,mats,mat1,dim1;
  if length(rep)<0 then rederr("list too short");
  if not(outer!+list!+p(rep)) then rederr("argument should be a list");
  if (length(rep)<2) then rederr("empty list is not a representation");
  group:=get!_group!_out(rep);
  if not(available!*p(group) or storing!*p(group)) then
   rederr("one element must be an identifier of an available group");
  mats:=for each elem in get!*generators(group) collect
        get!_repmatrix!_out(elem,rep);
  for each mat1 in mats do
     if not(alg!+matrix!+p(mat1)) then
        rederr("there should be a matrix for each generator");
  mats:=for each mat1 in mats collect mk!+inner!+mat(mat1);
  for each mat1 in mats do
     if not(squared!+matrix!+p(mat1)) then
        rederr("matrices should be squared");
  mat1:=car mats;
  mats:=cdr mats;
  dim1:=get!+row!+nr(mat1);
  while length(mats)>0 do
    <<
      if not(dim1=get!+row!+nr(car mats)) then
         rederr("representation matrices must have the same dimension");
      mat1:=car mats;
      mats:= cdr mats;
    >>;
  return t;
end;

symbolic procedure irr!:nr!:p(nr,group);
% returns true, if group is a group and information is available
% and nr is number of an irreducible representation
begin
  if not(fixp(nr)) then rederr("nr should be an integer");
  if (nr>0 and nr<= get!_nr!_irred!_reps(group)) then
        return t;
end;

symbolic procedure symmetry!:p(matrix1,representation);
% returns true, if the matrix has the symmetry of this representation
% internal structures
begin
scalar group,glist,symmetryp,repmat;
   group:=get!_group!_in(representation);
   glist:=get!*generators(group);
   symmetryp:=t;
   while (symmetryp and (length(glist)>0)) do
      <<
         repmat:=get!_rep!_matrix!_in(car glist,representation);
         if not (equal!+matrices!+p(
                mk!+mat!+mult!+mat(repmat,matrix1),
                mk!+mat!+mult!+mat(matrix1,repmat)) ) then
                  symmetryp:=nil;
         glist:= cdr glist;
      >>;
  return symmetryp;
end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  check functions used by definition of the group
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

symbolic procedure identifier!:list!:p(idlist);
% returns true if idlist is a list of identifiers
begin
  if length(idlist)>0 then
      <<
         if idp(car idlist) then
             return identifier!:list!:p(cdr idlist);
      >> else
      return t;
end;

symbolic procedure generator!:list!:p(group,generatorl);
% returns true if generatorl is an idlist
% consisting of the generators of the group
begin
scalar element,res;
  res:=t;
  if length(generatorl)<1 then
              rederr("there should be a list of generators");
  if length(get!*generators(group))<1 then
              rederr("there are no group generators stored");
  if not(identifier!:list!:p(generatorl)) then return nil;
  for each element in generatorl do
        if not(g!*generater!*p(group,element)) then
            res:=nil;
  return res;
end;

symbolic procedure relation!:list!:p(group,relations);
% relations -- list of two generator lists
begin
  if length(get!*generators(group))<1 then
              rederr("there are no group generators stored");
  return (relation!:part!:p(group,car relations) and
          relation!:part!:p(group,cadr relations))
end;

symbolic procedure relation!:part!:p(group,relationpart);
% relations -- list of two generator lists
begin
scalar generators,res,element;
  res:=t;
  generators:=get!*generators(group);
  if length(generators)<1 then
              rederr("there are no group generators stored");
  if length(relationpart)<1 then
              rederr("wrong relation given");
  if not(identifier!:list!:p(relationpart)) then return nil;
  generators:=append(list('id),generators);
  for each element in relationpart do
       if not(memq(element,generators)) then res:=nil;
  return res;
end;

symbolic procedure group!:table!:p(group,gtable);
% returns true, if gtable is a group table
% gtable - matrix in internal representation
begin
scalar row;
  if not(get!+mat!+entry(gtable,1,1) = 'grouptable) then
  rederr("first diagonal entry in a group table must be grouptable");
  for each row in gtable do
       if not(group!:elemts!:p(group,cdr row)) then
            rederr("this should be a group table");
  for each row in mk!+transpose!+matrix(gtable) do
       if not(group!:elemts!:p(group,cdr row)) then
            rederr("this should be a group table");
  return t;
end;

symbolic procedure group!:elemts!:p(group,elems);
% returns true if each element of group appears exactly once in the list
begin
   return equal!+lists!+p(get!*elements(group),elems);
end;

symbolic procedure check!:complete!:rep!:p(group);
% returns true if sum ni^2 = grouporder and
%                 sum realni = sum complexni
begin
scalar nr,j,sum,dime,order1,sumreal,chars,complexcase;
    nr:=get!*nr!*complex!*irred!*reps(group);
    sum:=(nil ./ 1);
    for j:=1:nr do
       <<
         dime:=change!+int!+to!+sq( get!_dimension!_in(
                get!*complex!*irreducible!*rep(group,j)));
         sum:=addsq(sum,multsq(dime,dime));
       >>;
    order1:=change!+int!+to!+sq(get!*order(group));
    if not(null(numr(addsq(sum,negsq(order1))))) then
        rederr("one complex irreducible representation missing or
                    is not irreducible");
    sum:=(nil ./ 1);
    for j:=1:nr do
       <<
         dime:=change!+int!+to!+sq( get!_dimension!_in(
                get!*complex!*irreducible!*rep(group,j)));
         sum:=addsq(sum,dime);
       >>;
    chars:=for j:=1:nr collect
            get!*complex!*character(group,j);
    if !*complex then
      <<
        complexcase:=t;
      >> else
      <<
        complexcase:=nil;
        on complex;
      >>;
    if not(orthogonal!:characters!:p(chars)) then
          rederr("characters are not orthogonal");
    if null(complexcase) then off complex;
    nr:=get!*nr!*real!*irred!*reps(group);
    sumreal:=(nil ./ 1);
    for j:=1:nr do
       <<
         dime:=change!+int!+to!+sq( get!_dimension!_in(
                get!*real!*irreducible!*rep(group,j)));
         sumreal:=addsq(sumreal,dime);
       >>;
    chars:=for j:=1:nr collect
            get!*real!*character(group,j);
    if not(orthogonal!:characters!:p(chars)) then
          rederr("characters are not orthogonal");
    if not(null(numr(addsq(sum,negsq(sumreal))))) then
  rederr("list real irreducible representation incomplete or wrong");
  return t;
end;

symbolic procedure orthogonal!:characters!:p(chars);
% returns true if all characters in list are pairwise orthogonal
begin
scalar chars1,chars2,char1,char2;
  chars1:=chars;
  while (length(chars1)>0) do
    <<
      char1:=car chars1;
      chars1:=cdr chars1;
      chars2:=chars1;
         while (length(chars2)>0) do
            <<
               char2:=car chars2;
               chars2:=cdr chars2;
               if not(change!+sq!+to!+algnull(
                      char!_prod(char1,char2))=0)
                  then rederr("not orthogonal");
            >>;
    >>;
  return t;
end;

symbolic procedure write!:to!:file(group,filename);
begin
scalar nr,j;
if not(available!*p(group)) then rederr("group is not available");
out filename;
rprint(list
   ('off, 'echo));
rprint('symbolic);
rprint(list
   ('set!*elems!*group ,mkquote group,mkquote get!*elements(group)));
rprint(list
   ('set!*generators, mkquote group,mkquote get!*generators(group)));
rprint(list
   ('set!*relations, mkquote group,
       mkquote get!*generator!*relations(group)));
rprint(list
   ('set!*grouptable, mkquote group,mkquote get(group,'grouptable)));
rprint(list
   ('set!*inverse, mkquote group,mkquote get(group,'inverse)));
rprint(list
   ('set!*elemasgen, mkquote group
          ,mkquote get(group,'elem!_in!_generators)));
rprint(list
   ('set!*group, mkquote group,mkquote get(group,'equiclasses)));

nr:=get!*nr!*complex!*irred!*reps(group);
   for j:=1:nr do
     <<
       rprint(list
   ('set!*representation, mkquote group,
           mkquote cdr get!*complex!*irreducible!*rep(group,j),
            mkquote 'complex));
     >>;
nr:=get!*nr!*real!*irred!*reps(group);
   for j:=1:nr do
     <<
       rprint(list
   ('set!*representation, mkquote group,
           mkquote get(group,mkid('realrep,j)),mkquote 'real));
     >>;
rprint(list(
    'set!*available,mkquote group));
rprint('algebraic);
rprint('end);
shut filename;
end;


symbolic procedure mk!_relation!_list(relations);
% input: outer structure : reval of {r*s*r^2=s,...}
% output: list of pairs of lists
begin
scalar twolist,eqrel;
  if not(outer!+list!+p(relations)) then
       rederr("this should be a list");
  twolist:=for each eqrel in mk!+inner!+list(relations) collect
       change!_eq!_to!_lists(eqrel);
  return twolist;
end;

symbolic procedure change!_eq!_to!_lists(eqrel);
begin
 if not(outer!+equation!+p(eqrel)) then
    rederr("equations should be given");
 return list(mk!_side!_to!_list(reval cadr eqrel),
             mk!_side!_to!_list(reval caddr eqrel));
end;

symbolic procedure mk!_side!_to!_list(identifiers);
begin
scalar i;
  if idp(identifiers) then return list(identifiers);
  if eqcar(identifiers,'plus) then rederr("no addition in this group");
  if eqcar(identifiers,'expt) then
     return for i:=1:(caddr identifiers) collect (cadr identifiers);
  if eqcar(identifiers,'times) then
     rederr("no multiplication with * in this group");
if eqcar(identifiers,'!@) then
     return append(mk!_side!_to!_list(cadr identifiers),
                  mk!_side!_to!_list(caddr identifiers));
end;


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  pass to algebraic level
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

symbolic procedure alg!:print!:group(group);
% returns the group element list in correct algebraic mode
begin
  return mk!+outer!+list(get!*elements(group));
end;

symbolic procedure alg!:generators(group);
% returns the generator list of a group in correct algebraic mode
begin
  return append(list('list),get!*generators(group));
end;

symbolic procedure alg!:characters(group);
% returns the (real od complex) character table
% in correct algebraic mode
begin
scalar nr,i,charlist,chari;
  nr:=get!_nr!_irred!_reps(group);
  charlist:=for i:=1:nr collect
     if !*complex then
        get!*complex!*character(group,i) else
        get!*real!*character(group,i);
  charlist:= for each chari in charlist collect
        alg!:print!:character(chari);
  return mk!+outer!+list(charlist);
end;

symbolic procedure alg!:irr!:reps(group);
% returns the (real od complex) irr. rep. table
% in correct algebraic mode
begin
scalar repi,reps,nr,i;
  nr:=get!_nr!_irred!_reps(group);
  reps:=for i:=1:nr collect
     if !*complex then
        get!*complex!*irreducible!*rep(group,nr) else
        get!*real!*irreducible!*rep(group,i);
  reps:= for each repi in reps collect
        alg!:print!:rep(repi);
  return mk!+outer!+list(reps);
end;

symbolic procedure alg!:print!:rep(representation);
% returns the representation in correct algebraic mode
begin
scalar pair,repr,group,mat1,g;
  group:=get!_group!_in(representation);
  repr:=eli!_group!_in(representation);
  repr:= for each pair in repr collect
      <<
          mat1:=cadr pair;
          g:=car pair;
          mat1:=mk!+outer!+mat(mat1);
          mk!+equation(g,mat1)
      >>;
  repr:=append(list(group),repr);
  return mk!+outer!+list(repr)
end;

symbolic procedure alg!:can!:decomp(representation);
% returns the canonical decomposition in correct algebraic mode
% representation in internal structure
begin
scalar nr,nrirr,ints,i,sum;
   nrirr:=get!_nr!_irred!_reps(get!_group!_in(representation));
   ints:=for nr:=1:nrirr collect
       mk!_multiplicity(representation,nr);
   sum:=( nil ./ 1);
   ints:= for i:=1:length(ints) do
      sum:=addsq(sum,
             multsq(change!+int!+to!+sq(nth(ints,i)),
                   simp mkid('teta,i)
                  )
                );
   return mk!+equation('teta,prepsq sum);
end;

symbolic procedure alg!:print!:character(character);
% changes the character from internal representation
% to printable representation
begin
scalar group,res,equilists;
  group:=get!_char!_group(character);
  res:=get!*all!*equi!*classes(group);
  res:= for each equilists in res collect
         mk!+outer!+list(equilists);
  res:= for each equilists in res collect
          mk!+outer!+list( list(equilists,
            prepsq get!_char!_value(character,cadr equilists)));
  res:=append(list(group),res);
  return mk!+outer!+list(res);
end;

endmodule;


module symchrep;
%
% Symmetry Package
%
% Author : Karin Gatermann
%         Konrad-Zuse-Zentrum fuer
%         Informationstechnik Berlin
%         Heilbronner Str. 10
%         W-1000 Berlin 31
%         Germany
%         Email: Gatermann@sc.ZIB-Berlin.de


% symchrep.red

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  functions for representations in iternal structure
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

symbolic procedure mk!_internal(representation);
% transfers the user given representation structure to the
% internal structure
begin
scalar group,elems,generators,repgenerators,g,res;
  group:=get!_group!_out(representation);
  elems:=get!*elements(group);
  generators:=get!*generators(group);
  repgenerators:=mk!_rep!_relation(representation,generators);
  if not(hard!_representation!_check!_p(group,repgenerators)) then
      rederr("this is no representation");
  res:=for each g in elems collect
       list(g,
           mk!_rep!_mat(
                 get!*elem!*in!*generators(group,g),
                 repgenerators)
           );
  return append(list(group),res);
end;

symbolic procedure hard!_representation!_check!_p(group,repgenerators);
% repgenerators -- ((g1,matg1),(g2,matg2),...)
begin
scalar checkp;
  checkp:=t;
  for each relation in get!*generator!*relations(group) do
    if not(relation!_check!_p(relation,repgenerators)) then
        checkp:=nil;
  return checkp;
end;

symbolic procedure relation!_check!_p(relation,repgenerators);
begin
scalar mat1,mat2;
  mat1:=mk!_relation!_mat(car relation, repgenerators);
  mat2:=mk!_relation!_mat(cadr relation, repgenerators);
  return equal!+matrices!+p(mat1,mat2);
end;

symbolic procedure mk!_relation!_mat(relationpart,repgenerators);
begin
scalar mat1,g;
   mat1:=mk!+unit!+mat(get!+row!+nr(cadr car repgenerators));
   for each g in relationpart do
     mat1:=mk!+mat!+mult!+mat(mat1,get!_mat(g,repgenerators));
  return mat1;
end;

symbolic procedure get!_mat(elem,repgenerators);
begin
scalar found,res;
  if elem='id then
    return mk!+unit!+mat(get!+row!+nr(cadr car repgenerators));
  found:=nil;
  while ((length(repgenerators)>0) and (null found)) do
    <<
       if elem = caar repgenerators then
         <<
           res:=cadr car repgenerators;
           found := t;
         >>;
       repgenerators:=cdr repgenerators;
    >>;
  if found then return res else
       rederr("error in get_mat");
end;

symbolic procedure mk!_rep!_mat(generatorl,repgenerators);
% returns the representation matrix (internal structure)
% of a group element represented in generatorl
begin
scalar mat1;
   mat1:=mk!+unit!+mat(get!+row!+nr(cadr(car(repgenerators))));
   for each generator in generatorl do
     mat1:=mk!+mat!+mult!+mat(mat1,
                              get!_rep!_of!_generator(
                                generator,repgenerators)
                             );
   return mat1;
end;

symbolic procedure get!_rep!_of!_generator(generator,repgenerators);
% returns the representation matrix (internal structure)
% of the generator
begin
 scalar found,mate,ll;
  if (generator='id) then return mk!+unit!+mat(
                  get!+row!+nr(cadr(car(repgenerators))));
   found:=nil;
   ll:=repgenerators;
   while (not(found) and (length(ll)>0)) do
      <<
        if (caar(ll)=generator) then
           <<
              found:=t;
              mate:=cadr(car(ll));
           >>;
         ll:=cdr ll;
      >>;
  if found then return mate else
    rederr(" error in get rep of generators");
end;

symbolic procedure get!_group!_in(representation);
% returns the group of the internal data structure representation
begin
  return car representation;
end;

symbolic procedure eli!_group!_in(representation);
% returns the internal data structure representation without group
begin
  return cdr representation;
end;

symbolic procedure get!_rep!_matrix!_in(elem,representation);
% returns the matrix of the internal data structure representation
begin
scalar found,mate,replist;
   found:=nil;
   replist:=cdr representation;
   while (null(found) and length(replist)>0) do
     <<
       if ((caar(replist)) = elem) then
             <<
                mate:=cadr(car (replist));
                found:=t;
             >>;
       replist:=cdr replist;
     >>;
  if found then return mate else
       rederr("error in get representation matrix");
end;

symbolic procedure get!_dimension!_in(representation);
% returns the dimension of the representation (internal data structure)
% output is an integer
begin
   return change!+sq!+to!+int(mk!+trace(get!_rep!_matrix!_in('id,
      representation)));
end;

symbolic procedure get!_rep!_matrix!_entry(representation,elem,z,s);
% get a special value of the matrix representation of group
% get the matrix of this representatiuon corresponding
% to the element elem
% returns the matrix element of row z and column s
begin
  return get!+mat!+entry(
           get!_rep!_matrix!_in(elem,representation),
            z,s) ;
end;

symbolic procedure mk!_resimp!_rep(representation);
begin
scalar group,elem,res;
  group:=get!_group!_in(representation);
  res:=for each elem in get!*elements(group) collect
 list(elem,mk!+resimp!+mat(get!_rep!_matrix!_in(elem,representation)));
  return append(list(group),res);
end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  functions for characters in iternal structure
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

symbolic procedure get!_char!_group(char1);
% returns the group of the internal data structure character
begin
  return car char1;
end;

symbolic procedure get!_char!_dim(char1);
% returns the dimension of the internal data structure character
% output is an integer
begin
   return change!+sq!+to!+int(get!_char!_value(char1,'id));
end;

symbolic procedure get!_char!_value(char1,elem);
% returns the value of an element
% of the internal data structure character
begin
scalar found,value,charlist;
   found:=nil;
   charlist:=cdr char1;
   while (null(found) and length(charlist)>0) do
     <<
       if ((caar(charlist)) = elem) then
             <<
                value:=cadr(car (charlist));
                found:=t;
             >>;
       charlist := cdr charlist;
     >>;
  if found then return value else
       rederr("error in get character element");
end;

endmodule;


module symhandl;
%
% Symmetry Package
%
% Author: Karin Gatermann
%         Konrad-Zuse-Zentrum fuer
%         Informationstechnik Berlin
%         Heilbronner Str. 10
%         W-1000 Berlin 31
%         Germany
%         Email: Gatermann@sc.ZIB-Berlin.de

%  symhandl.red

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% functions to get the stored information of groups
% booleans first
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

symbolic procedure available!*p(group);
% returns true, if the information
% concerning irreducible representations
% of the group are in this database
begin
   if not(idp(group)) then rederr("this is no group identifier");
   return flagp(group,'available);
end;

symbolic procedure storing!*p(group);
% returns true, if the information concerning generators
% and group elements
% of the group are in this database
begin
   return flagp(group,'storing);
end;

symbolic procedure g!*element!*p(group,element);
% returns true, if element is an element of the abstract group
begin
   if memq(element,get!*elements(group)) then return t else return nil;
end;

symbolic procedure g!*generater!*p(group,element);
% returns true, if element is a generator of the abstract group
begin
  if memq(element,get!*generators(group)) then return t else return nil;
end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% operators for abstract group
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

symbolic procedure get!*available!*groups;
% returns the available groups as a list
begin
  return get('availables,'groups);
end;

symbolic procedure get!*order(group);
% returns the order of group as integer
begin
  return length(get!*elements(group));
end;

symbolic procedure get!*elements(group);
% returns the abstract elements of group
% output list of identifiers
begin
scalar ll;
  return get(group,'elems);
end;

symbolic procedure get!*generators(group);
% returns a list abstract elements of group which generates the group
begin
   return get(group,'generators);
end;

symbolic procedure get!*generator!*relations(group);
% returns a list with relations
% which are satisfied for the generators of the group
begin
   return get(group,'relations);
end;

symbolic procedure get!*product(group,elem1,elem2);
% returns the element elem1*elem2  of  group
begin
scalar table,above,left;
    table:=get(group,'grouptable);
    above:= car table;
    left:=for each row in table collect car row;
    return get!+mat!+entry(table,
                give!*position(elem1,left),
                give!*position(elem2,above));
end;

symbolic procedure get!*inverse(group,elem);
% returns the inverse element of the element elem in group
% invlist = ((g1,g2,..),(inv1,inv2,...))
begin
scalar invlist;
    invlist:=get(group,'inverse);
    return nth(cadr invlist,give!*position(elem,car invlist));
end;

symbolic procedure give!*position(elem,ll);
begin
scalar j,found;
j:=1; found:=nil;
    while (null(found) and (j<=length(ll))) do
       <<
          if (nth(ll,j)=elem) then found:=t else j:=j+1;
       >>;
    if null(found) then rederr("error in give position");
    return j;
end;

symbolic procedure get!*elem!*in!*generators(group,elem);
% returns the element representated by the generators of group
begin
scalar ll,found,res;
    ll:=get(group,'elem!_in!_generators);
    if (elem='id) then return list('id);
    found:=nil;
    while (null(found) and (length(ll)>0)) do
      <<
         if (elem=caaar ll) then
           <<
              res:=cadr car ll;
              found:=t;
           >>;
          ll:=cdr ll;
      >>;
  if found then return res else
       rederr("error in get!*elem!*in!*generators");
end;

symbolic procedure get!*nr!*equi!*classes(group);
% returns the number of equivalence classes of group
begin
    return length(get(group,'equiclasses));
end;

symbolic procedure get!*equi!*class(group,elem);
% returns the equivalence class of the element elem  in  group
begin
scalar ll,equic,found;
    ll:=get(group,'equiclasses);
    found:=nil;
    while (null(found) and (length(ll)>0)) do
      <<
         if memq(elem,car ll) then
           <<
              equic:=car ll;
              found:=t;
           >>;
          ll:=cdr ll;
      >>;
  if found then return equic;
end;

symbolic procedure get!*all!*equi!*classes(group);
% returns the equivalence classes of the element elem  in  group
% list of lists of identifiers
begin
    return get(group,'equiclasses);
end;


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% functions to get information of real irred. representation of group
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

symbolic procedure get!*nr!*real!*irred!*reps(group);
% returns number of real irreducible representations of group
begin
  return get(group,'realrepnumber);
end;

symbolic procedure get!*real!*character(group,nr);
% returns the nr-th real character of the group group
begin
   return mk!_character(get!*real!*irreducible!*rep(group,nr));
end;

symbolic procedure get!*real!*comp!*chartype!*p(group,nr);
% returns true if the type of the real irreducible rep.
% of the group is complex
begin
  if eqcar( get(group,mkid('realrep,nr)) ,'complextype) then return t;
end;

symbolic procedure get!*real!*irreducible!*rep(group,nr);
% returns the real nr-th irreducible matrix representation of group
begin
  return mk!_resimp!_rep(append(list(group),
    cdr get(group,mkid('realrep,nr))));
end;


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% functions to get information of
%  complex irreducible representation of group
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


symbolic procedure get!*nr!*complex!*irred!*reps(group);
% returns number of complex irreducible representations of group
begin
  return get(group,'complexrepnumber);
end;

symbolic procedure get!*complex!*character(group,nr);
% returns the nr-th complex character of the group group
begin
   return mk!_character(get!*complex!*irreducible!*rep(group,nr));
end;

symbolic procedure get!*complex!*irreducible!*rep(group,nr);
% returns the complex nr-th irreduciblematrix representation of group
begin
  return mk!_resimp!_rep(append(list(group),
      get(group,mkid('complexrep,nr))));
end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  set information upon group
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

symbolic procedure set!*group(group,equiclasses);
%
begin
  put(group,'equiclasses,equiclasses);
end;

symbolic procedure set!*elems!*group(group,elems);
%
begin
  put(group,'elems,elems);
end;

symbolic procedure set!*generators(group,generators);
%
begin
  put(group,'generators,generators);
end;

symbolic procedure set!*relations(group,relations);
%
begin
  put(group,'relations,relations);
end;

symbolic procedure set!*available(group);
begin
scalar grouplist;
  flag(list(group),'available);
  grouplist:=get('availables,'groups);
  grouplist:=append(grouplist,list(group));
  put('availables,'groups,grouplist);
end;

symbolic procedure set!*storing(group);
begin
  flag(list(group),'storing);
end;

symbolic procedure set!*grouptable(group,table);
%
begin
  put(group,'grouptable,table);
end;

symbolic procedure set!*inverse(group,invlist);
% stores the inverse element list in group
begin
  put(group,'inverse,invlist);
end;

symbolic procedure set!*elemasgen(group,glist);
%
begin
  put(group,'elem!_in!_generators,glist);
end;

symbolic procedure set!*representation(group,replist,type);
%
begin
scalar nr;
  nr:=get(group,mkid(type,'repnumber));
  if null(nr) then nr:=0;
  nr:=nr+1;
  put(group,mkid(mkid(type,'rep),nr),replist);
  set!*repnumber(group,type,nr);
end;

symbolic procedure set!*repnumber(group,type,nr);
%
begin
  put(group,mkid(type,'repnumber),nr);
end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  functions to build information upon group
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

symbolic procedure mk!*inverse!*list(table);
% returns ((elem1,elem2,..),(inv1,inv2,..))
begin
scalar elemlist,invlist,elem,row,column;
  elemlist:=cdr(car (mk!+transpose!+matrix(table)));
  invlist:=for each elem in elemlist collect
    <<
      row:=give!*position(elem,elemlist);
      column:=give!*position('id,cdr nth(table,row+1));
      nth(cdr(car table),column)
    >>;
  return list(elemlist,invlist);
end;

symbolic procedure mk!*equiclasses(table);
% returns ((elem1,elem2,..),(inv1,inv2,..))
begin
scalar elemlist,restlist,s,r,tt,ts;
scalar rows,rowt,columnt,columnr,equiclasses,equic,firstrow;
  elemlist:=cdr(car (mk!+transpose!+matrix(table)));
  restlist:=elemlist;
  firstrow:=cdr car table;
  equiclasses:=nil;
  while (length(restlist)>0) do
     <<
        s:=car restlist;
        rows:=give!*position(s,elemlist);
        equic:=list(s);
        restlist:=cdr restlist;
        for each tt in elemlist do
         <<
           columnt:=give!*position(tt,firstrow);
           rowt:=give!*position(tt,elemlist);
           ts:=get!+mat!+entry(table,rows+1,columnt+1);
           columnr:=give!*position(ts,cdr nth(table,rowt+1));
           r:=nth(firstrow,columnr);
           equic:=union(equic,list(r));
           restlist:=delete(r,restlist);
         >>;
     equiclasses:=append(equiclasses,list(equic));
     >>;
  return equiclasses;
end;

endmodule;


module sympatch;
% from rprint.red
load!_package 'rprint;

fluid '(!*n buffp combuff!* curmark curpos orig pretop pretoprinf rmar);

symbolic procedure rprint u;
   begin integer !*n; scalar buff,buffp,curmark,rmar,x;
      curmark := 0;
      buff := buffp := list list(0,0);
      rmar := linelength nil;
      x := get('!*semicol!*,pretop);
      !*n := 0;
      mprino1(u,list(caar x,cadar x));
    %  prin2ox ";";
      prin2ox "$"; %3.11 91 KG
      omarko curmark;
      prinos buff
   end;

% error in treatment of roots in connection
% with conjugate of complex numbers

symbolic procedure reimexpt u;
   if cadr u eq 'e
     then addsq(reimcos list('cos,reval list('times,'i,caddr u)),
                multsq(simp list('minus,'i),
                    reimsin list('sin,reval list('times,'i,caddr u))))
    else if fixp cadr u and cadr u > 0
              and eqcar(caddr u,'quotient)
              and fixp cadr caddr u
              and fixp caddr caddr u
     then mksq(u,1)
    else addsq(mkrepart u,multsq(simp 'i,mkimpart u));

put('expt,'cmpxsplitfn,'reimexpt);
put('cos,'cmpxsplitfn,'reimcos);
put('sin,'cmpxsplitfn,'reimsin);
endmodule;


module symwork;
%
% Symmetry Package
%
% Author : Karin Gatermann
%         Konrad-Zuse-Zentrum fuer
%         Informationstechnik Berlin
%         Heilbronner Str. 10
%         W-1000 Berlin 31
%         Germany
%         Email: Gatermann@sc.ZIB-Berlin.de


% symwork.red
% underground functions

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Boolean functions
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


%symbolic procedure complex!_case!_p();
% returns true, if complex arithmetic is desired
%begin
%  if !*complex then return t else return nil;
%end;

switch outerzeroscheck;

symbolic procedure correct!_diagonal!_p(matrixx,representation,mats);
% returns true, if matrix may be block diagonalized to mats
begin
scalar basis,diag;
   basis:=mk!_sym!_basis (representation);
   diag:= mk!+mat!*mat!*mat(
             mk!+hermitean!+matrix(basis),
             matrixx,basis);
   if equal!+matrices!+p(diag,mats) then return t;
end;


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% functions on data depending on real or complex case
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


symbolic procedure get!_nr!_irred!_reps(group);
% returns number of irreducible representations of group
begin
  if !*complex then
      return get!*nr!*complex!*irred!*reps(group) else
      return get!*nr!*real!*irred!*reps(group);
end;

symbolic procedure get!_dim!_irred!_reps(group,nr);
% returns dimension of nr-th irreducible representations of group
begin
scalar rep;
%   if !*complex then
%        return get!_char!_dim(get!*complex!*character(group,nr)) else
%        return get!_char!_dim(get!*real!*character(group,nr));
   if !*complex then
        rep:= get!*complex!*irreducible!*rep(group,nr) else
        rep:= get!*real!*irreducible!*rep(group,nr);
   return get!_dimension!_in(rep);
end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  functions for user given representations
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

symbolic procedure get!_group!_out(representation);
% returns the group identifier given in representation
begin
   scalar group,found,eintrag,repl;
   found:=nil;
   repl:=cdr representation;
   while (not(found) and (length(repl)>1)) do
     <<
        eintrag:=car repl;
        repl:=cdr repl;
        if idp(eintrag) then
          <<
             group:=eintrag;
             found:=t;
          >>;
      >>;
  if found then return group else
  rederr("group identifier missing");
end;

symbolic procedure get!_repmatrix!_out(elem,representation);
% returns the representation matrix of elem given in representation
% output in internal structure
begin
scalar repl,found,matelem,eintrag;
   found:=nil;
   repl:= cdr representation;
   while (null(found) and (length(repl)>0)) do
     <<
        eintrag:=car repl;
        repl:=cdr repl;
        if eqcar(eintrag,'equal) then
           <<
              if not(length(eintrag) = 3) then
                       rederr("incomplete equation");
              if (cadr(eintrag) = elem) then
                <<
                   found:=t;
                   matelem:=caddr eintrag;
                >>;
           >>;
     >>;
   if found then return matelem else
        rederr("representation matrix for one generator missing");
end;

symbolic procedure mk!_rep!_relation(representation,generators);
% representation in user given structure
% returns a list of pairs with generator and its representation matrix
% in internal structure
begin
scalar g,matg,res;
  res:=for each g in generators collect
     <<
        matg:= mk!+inner!+mat(get!_repmatrix!_out(g,representation));
        if not(unitarian!+p(matg)) then
             rederr("please give an orthogonal or unitarian matrix");
        list(g,matg)
      >>;
  return res;
end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% functions which compute, do the real work, get correct arguments
%                    and use get-functions from sym_handle_data.red
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

symbolic procedure mk!_character(representation);
% returns the character of the representation (in internal structure)
% result in internal structure
begin
scalar group,elem,char;
   group:=get!_group!_in(representation);
   char:= for each elem in get!*elements(group) collect
             list(elem,
                  mk!+trace(get!_rep!_matrix!_in(
                              elem,representation)
                           )
                  );
   char:=append(list(group),char);
   return char;
end;

symbolic procedure mk!_multiplicity(representation,nr);
% returns the multiplicity of the nr-th rep. in representation
% internal structure
begin
scalar multnr,char1,group;
     group:=get!_group!_in(representation);
  if !*complex then
     char1:=mk!_character(get!*complex!*irreducible!*rep(group,nr))
         else
     char1:=mk!_character(get!*real!*irreducible!*rep(group,nr));
  multnr:=char!_prod(char1,mk!_character(representation));
% complex case factor 1/2 !!
     if (not(!*complex) and
         (get!*real!*comp!*chartype!*p(group,nr))) then
         multnr:=multsq(multnr,(1 ./ 2));
     return change!+sq!+to!+int(multnr);
end;


symbolic procedure char!_prod(char1,char2);
% returns the inner product of the two characters as sq
begin
scalar group,elems,sum,g,product;
  group:=get!_char!_group(char1);
  if not(group = get!_char!_group(char2))
      then rederr("no product for two characters of different groups");
  if not (available!*p(group)) and not(storing!*p(group)) then
       rederr("strange group in character product");
  elems:=get!*elements(group);
  sum:=nil ./ 1;
  for each g in elems do
    <<
      product:=multsq(
        get!_char!_value(char1,g),
        get!_char!_value(char2,get!*inverse(group,g))
                     );
      sum:=addsq(sum,product);
    >>;
  return quotsq(sum,change!+int!+to!+sq(get!*order(group)));
end;

symbolic procedure mk!_proj!_iso(representation,nr);
% returns the projection onto the isotypic component nr
begin
scalar group,elems,g,charnr,dimen,mapping,fact;
  group:=get!_group!_in(representation);
  if not (available!*p(group)) then
       rederr("strange group in projection");
  if not(irr!:nr!:p(nr,group)) then
       rederr("incorrect number of representation");
  elems:=get!*elements(group);
  if !*complex then
      charnr:=
          mk!_character(get!*complex!*irreducible!*rep(group,nr))
  else
      charnr:=mk!_character(get!*real!*irreducible!*rep(group,nr));
  dimen:=get!_dimension!_in(representation);
  mapping:=mk!+null!+mat(dimen,dimen);
  for each g in elems do
    <<
      mapping:=mk!+mat!+plus!+mat(
              mapping,
              mk!+scal!+mult!+mat(
        get!_char!_value(charnr,get!*inverse(group,g)),
        get!_rep!_matrix!_in(g,representation)
                                 )
                                 );
    >>;
  fact:=quotsq(change!+int!+to!+sq(get!_char!_dim(charnr)),
         change!+int!+to!+sq(get!*order(group)));
  mapping:=mk!+scal!+mult!+mat(fact,mapping);
% complex case factor 1/2 !!
  if (not(!*complex) and
    (get!*real!*comp!*chartype!*p(group,nr))) then
       mapping:=mk!+scal!+mult!+mat((1 ./ 2),mapping);
  return mapping;
end;

symbolic procedure mk!_proj!_first(representation,nr);
% returns the projection onto the first vector space of the
% isotypic component nr
begin
scalar group,elems,g,irrrep,dimen,mapping,fact,charnr,irrdim;
  group:=get!_group!_in(representation);
  if not (available!*p(group)) then
       rederr("strange group in projection");
  if not(irr!:nr!:p(nr,group)) then
       rederr("incorrect number of representation");
  elems:=get!*elements(group);
  if !*complex then
      irrrep:=get!*complex!*irreducible!*rep(group,nr) else
      irrrep:=get!*real!*irreducible!*rep(group,nr);
  dimen:=get!_dimension!_in(representation);
  mapping:=mk!+null!+mat(dimen,dimen);
  for each g in elems do
    <<
      mapping:=mk!+mat!+plus!+mat(
              mapping,
              mk!+scal!+mult!+mat(
        get!_rep!_matrix!_entry(irrrep,get!*inverse(group,g),1,1),
        get!_rep!_matrix!_in(g,representation)
                                 )
                                 );
    >>;
  irrdim:=get!_dimension!_in(irrrep);
  fact:=quotsq(change!+int!+to!+sq(irrdim),
         change!+int!+to!+sq(get!*order(group)));
  mapping:=mk!+scal!+mult!+mat(fact,mapping);
% no special rule for real irreducible representations of complex type
  return mapping;
end;

symbolic procedure mk!_mapping(representation,nr,count);
% returns the mapping from V(nr 1) to V(nr count)
% output is internal matrix
begin
scalar group,elems,g,irrrep,dimen,mapping,fact,irrdim;
  group:=get!_group!_in(representation);
  if not (available!*p(group)) then
       rederr("strange group in projection");
  if not(irr!:nr!:p(nr,group)) then
       rederr("incorrect number of representation");
  elems:=get!*elements(group);
  if !*complex then
      irrrep:=get!*complex!*irreducible!*rep(group,nr) else
      irrrep:=get!*real!*irreducible!*rep(group,nr);
  dimen:=get!_dimension!_in(representation);
  mapping:=mk!+null!+mat(dimen,dimen);
  for each g in elems do
    <<
      mapping:=mk!+mat!+plus!+mat(
              mapping,
              mk!+scal!+mult!+mat(
        get!_rep!_matrix!_entry(irrrep,get!*inverse(group,g),1,count),
        get!_rep!_matrix!_in(g,representation)
                                 )
                                 );
    >>;
  irrdim:=get!_dimension!_in(irrrep);
  fact:=quotsq(change!+int!+to!+sq(irrdim),
         change!+int!+to!+sq(get!*order(group)));
  mapping:=mk!+scal!+mult!+mat(fact,mapping);
% no special rule for real irreducible representations of complex type
  return mapping;
end;

symbolic procedure mk!_part!_sym (representation,nr);
% computes the symmetry adapted basis of component nr
% output matrix
begin
scalar unitlist, veclist2, mapping, v;
  unitlist:=gen!+can!+bas(get!_dimension!_in(representation));
  mapping:=mk!_proj!_iso(representation,nr);
  veclist2:= for each v in unitlist collect
             mk!+mat!+mult!+vec(mapping,v);
  return mk!+internal!+mat(gram!+schmid(veclist2));
end;

symbolic procedure mk!_part!_sym1 (representation,nr);
% computes the symmetry adapted basis of component V(nr 1)
% internal structure for in and out
% output matrix
begin
scalar unitlist, veclist2, mapping, v,group;
  unitlist:=gen!+can!+bas(get!_dimension!_in(representation));
  group:=get!_group!_in (representation);
  if (not(!*complex) and
       get!*real!*comp!*chartype!*p(group,nr)) then
     <<
        mapping:=mk!_proj!_iso(representation,nr);
     >> else
        mapping:=mk!_proj!_first(representation,nr);
  veclist2:= for each v in unitlist collect
             mk!+mat!+mult!+vec(mapping,v);
  veclist2:=mk!+resimp!+mat(veclist2);
  return mk!+internal!+mat(gram!+schmid(veclist2));
end;

symbolic procedure mk!_part!_symnext (representation,nr,count,mat1);
% computes the symmetry adapted basis of component V(nr count)
% internal structure for in and out -- count > 2
% bas1 -- internal matrix
% output matrix
begin
scalar veclist1, veclist2, mapping, v;
  mapping:=mk!_mapping(representation,nr,count);
  veclist1:=mat!+veclist(mat1);
  veclist2:= for each v in veclist1 collect
      mk!+mat!+mult!+vec(mapping,v);
  return mk!+internal!+mat(veclist2);
end;

symbolic procedure mk!_sym!_basis (representation);
% computes the complete symmetry adapted basis
% internal structure for in and out
begin
scalar nr,anz,group,dimen,mats,matels,mat1,mat2;
   group:=get!_group!_in(representation);
   anz:=get!_nr!_irred!_reps(group);
   mats:=for nr := 1:anz join
     if not(null(mk!_multiplicity(representation,nr))) then
     <<
       if get!_dim!_irred!_reps(group,nr)=1 then
           mat1:=mk!_part!_sym (representation,nr)
        else
           mat1:=mk!_part!_sym1 (representation,nr);
       if (not(!*complex) and
              get!*real!*comp!*chartype!*p(group,nr)) then
           <<
              matels:=list(mat1);
           >> else
           <<
              if get!_dim!_irred!_reps(group,nr)=1 then
                <<
                   matels:=list(mat1);
                >> else
                <<
                   matels:=
                  for dimen:=2:get!_dim!_irred!_reps(group,nr) collect
                        mk!_part!_symnext(representation,nr,dimen,mat1);
                   matels:=append(list(mat1),matels);
                >>;
           >>;
       matels
     >>;
  if length(mats)<1 then rederr("no mats in mk!_sym!_basis");
  mat2:=car mats;
  for each mat1 in cdr mats do
      mat2:=add!+two!+mats(mat2,mat1);
  return mat2;
end;

symbolic procedure mk!_part!_sym!_all (representation,nr);
% computes the complete symmetry adapted basis
% internal structure for in and out
begin
scalar group,dimen,matels,mat1,mat2;
   group:=get!_group!_in(representation);
   if get!_dim!_irred!_reps(group,nr)=1 then
      mat1:=mk!_part!_sym (representation,nr)
      else
        <<
           mat1:=mk!_part!_sym1 (representation,nr);
       if (not(!*complex) and
              get!*real!*comp!*chartype!*p(group,nr)) then
           <<
              mat1:=mat1;
           >> else
           <<
              if get!_dim!_irred!_reps(group,nr)>1 then
                << matels:=
                  for dimen:=2:get!_dim!_irred!_reps(group,nr) collect
                     mk!_part!_symnext(representation,nr,dimen,mat1);
                  for each mat2 in matels do
                   mat1:=add!+two!+mats(mat1,mat2);
                >>;
           >>;
        >>;
  return mat1;
end;

symbolic procedure mk!_diagonal (matrix1,representation);
% computes the matrix in diagonal form
% internal structure for in and out
begin
scalar nr,anz,mats,group,mat1,diamats,matdia,dimen;
   group:=get!_group!_in(representation);
   anz:=get!_nr!_irred!_reps(group);
   mats:=for nr := 1:anz join
     if not(null(mk!_multiplicity(representation,nr))) then
     <<
       if get!_dim!_irred!_reps(group,nr)=1 then
           mat1:=mk!_part!_sym (representation,nr)
        else
           mat1:=mk!_part!_sym1 (representation,nr);
%        if (not(!*complex) and
%              get!*real!*comp!*chartype!*p(group,nr)) then
%                mat1:=add!+two!+mats(mat1,
%                          mk!_part!_symnext(representation,nr,2,mat1));
        matdia:= mk!+mat!*mat!*mat(
                  mk!+hermitean!+matrix(mat1),matrix1,mat1
                              );
        if (not(!*complex) and
              get!*real!*comp!*chartype!*p(group,nr)) then
           <<
             diamats:=list(matdia);
           >> else
           <<
             diamats:=
                  for dimen:=1:get!_dim!_irred!_reps(group,nr) collect
                     matdia;
            >>;
        diamats
     >>;
  mats:=mk!+block!+diagonal!+mat(mats);
  if !*outerzeroscheck then
    if not(correct!_diagonal!_p(matrix1,representation,mats)) then
       rederr("wrong diagonalisation");
  return mats;
end;

endmodule;


end;


REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]