File r34/xlog/taylor.log artifact 08d367dc11 part of check-in 30d10c278c


Sat Jun 29 14:12:23 PDT 1991
REDUCE 3.4, 15-Jul-91 ...

1: 1: 
2: 2: 
3: 3: comment
        Test and demonstration file for the Taylor expansion package,
        by Rainer M. Schoepf.  Works with version 1.3 (31-Jan-91);


showtime;


Time: 17 ms


on errcont;

 % disable interruption on errors

comment Simple Taylor expansion;


xx := taylor (e**x, x, 0, 4);


               1   2    1   3    1    4
XX := 1 + X + ---*X  + ---*X  + ----*X  + ...
               2        6        24

yy := taylor (e**y, y, 0, 4);


               1   2    1   3    1    4
YY := 1 + Y + ---*Y  + ---*Y  + ----*Y  + ...
               2        6        24


comment Basic operations, i.e. addition, subtraction, multiplication,
        and division are possible: this is not done automatically if
        the switch TAYLORAUTOCOMBINE is OFF.  In this case it is
        necessary to use taylorcombine;


taylorcombine (xx**2);


             2    4   3    2   4
1 + 2*X + 2*X  + ---*X  + ---*X  + ...
                  3        3

taylorcombine (ws - xx);


     3   2    7   3    5   4
X + ---*X  + ---*X  + ---*X  + ...
     2        6        8


comment The result is again a Taylor kernel;


if taylorseriesp ws then write "OK";


OK


comment It is not possible to combine Taylor kernels that were
        expanded with respect to different variables;


taylorcombine (xx**yy);


          1   2    1   3    1    4
(1 + X + ---*X  + ---*X  + ----*X  + ...)
          2        6        24

            1   2    1   3    1    4
**(1 + Y + ---*Y  + ---*Y  + ----*Y  + ...)
            2        6        24


comment But we can take the exponential or the logarithm
        of a Taylor kernel;


taylorcombine (e**xx);


             2    5*E   3    5*E   4
E + E*X + E*X  + -----*X  + -----*X  + ...
                   6          8

taylorcombine log ws;


         1   2    1   3    1    4
1 + X + ---*X  + ---*X  + ----*X  + ...
         2        6        24


comment We may try to expand about another point;


taylor (xx, x, 1, 2);


 65     8             5         2
---- + ---*(X - 1) + ---*(X - 1)  + ...
 24     3             4


comment Arc tangent is one of the functions this package knows of;


xxa := taylorcombine atan ws;


             65      1536              - 2933040         2
XXA := ATAN(----) + ------*(X - 1) + ------------*(X - 1)  + ...
             24      4801              23049601


comment Expansion with respect to more than one kernel is possible;


xy := taylor (e**(x+y), x, 0, 2, y, 0, 2);


               1   2              1   2      1   2    1     2
XY := 1 + Y + ---*Y  + X + Y*X + ---*Y *X + ---*X  + ---*Y*X
               2                  2          2        2

          1   2  2
       + ---*Y *X  + ...
          4


taylorcombine (ws**2);


             2                    2        2        2      2  2
1 + 2*Y + 2*Y  + 2*X + 4*Y*X + 4*Y *X + 2*X  + 4*Y*X  + 4*Y *X  + ...


comment We take the inverse and convert back to REDUCE's standard
        representation;


taylorcombine (1/ws);


             2                      2      2      2        2  2
1 - 2*X + 2*X  - 2*Y + 4*Y*X - 4*Y*X  + 2*Y  - 4*Y *X + 4*Y *X  + ...

taylortostandard ws;


   2  2      2        2        2                    2
4*X *Y  - 4*X *Y + 2*X  - 4*X*Y  + 4*X*Y - 2*X + 2*Y  - 2*Y + 1


comment An example of Taylor kernel divsion;


xx1 := taylor (sin (x), x, 0, 4);


             - 1   3
XX1 := X + ------*X  + ...
             6

taylorcombine (xx/xx1);


 -1        2
X   + 1 + ---*X + ...
           3

taylorcombine (1/xx1);


 -1    1       1    3
X   + ---*X + ----*X  + ...
       6       36


comment Here's what I call homogeneous expansion;


xx := taylor (e**(x*y), {x,y}, 0, 2);


XX := 1 + Y*X + ...

xx1 := taylor (sin (x+y), {x,y}, 0, 2);


XX1 := Y + X + ...

xx2 := taylor (cos (x+y), {x,y}, 0, 2);


             - 1   2           - 1   2
XX2 := 1 + ------*Y  - Y*X + ------*X  + ...
             2                 2

temp := taylorcombine (xx/xx2);


             1   2            1   2
TEMP := 1 + ---*Y  + 2*Y*X + ---*X  + ...
             2                2

taylorcombine (ws*xx2);


1 + Y*X + ...


comment The following shows a principal difficulty:
        since xx1 is symmetric in x and y but has no constant term
        it is impossible to compute 1/xx1;


taylorcombine (1/xx1);


***** Not a unit in argument to INVTAYLOR 


comment Substitution in Taylor expressions is possible;


sub (x=z, xy);


         1   2              1   2      1   2    1     2    1   2  2
1 + Y + ---*Y  + Z + Y*Z + ---*Y *Z + ---*Z  + ---*Y*Z  + ---*Y *Z
         2                  2          2        2          4

 + ...


comment Expression dependency in substitution is detected;


sub (x=y, xy);


***** Substitution of dependent variables Y Y 


comment It is possible to replace a Taylor variable by a constant;


sub (x=4, xy);


             13   2
13 + 13*Y + ----*Y  + ...
             2


sub (x=4, xx1);


4 + Y + ...


comment This package has three switches:
        TAYLORKEEPORIGINAL, TAYLORAUTOEXPAND, and TAYLORAUTOCOMBINE;


on taylorkeeporiginal;



temp := taylor (e**(x+y), x, 0, 5);


                      Y         Y         Y         Y
         Y    Y      E    2    E    3    E    4    E     5
TEMP := E  + E *X + ----*X  + ----*X  + ----*X  + -----*X  + ...
                     2         6         24        120


taylorcombine (log (temp));


Y + X + ...


taylororiginal ws;


X + Y


taylorcombine (temp * e**x);


                  Y         Y         Y         Y
 X   Y    Y      E    2    E    3    E    4    E     5
E *(E  + E *X + ----*X  + ----*X  + ----*X  + -----*X  + ...)
                 2         6         24        120


on taylorautoexpand;



taylorcombine ws;


                                Y           Y           Y
 Y       Y          Y   2    4*E    3    2*E    4    4*E    5
E  + (2*E )*X + (2*E )*X  + ------*X  + ------*X  + ------*X  + ...
                              3           3           15


taylororiginal ws;


 2*X + Y
E


taylorcombine (xx1 / x);


 -1      -1
X   + Y*X   + 1 + ...


on taylorautocombine;



xx / xx2;


     1   2            1   2
1 + ---*Y  + 2*Y*X + ---*X  + ...
     2                2


ws * xx2;


1 + Y*X + ...


comment Another example that shows truncation if Taylor kernels
        of different expansion order are combined;


p := taylor (x**2 + 2, x, 0, 10);


          2
P := 2 + X  + ...

p - x**2;


      2           2
(2 + X  + ...) - X

p - taylor (x**2, x, 0, 5);


2 + ...

taylor (p - x**2, x, 0, 6);


2 + ...

off taylorautocombine;


taylorcombine(p-x**2);


2 + ...

taylorcombine(p - taylor(x**2,x,0,5));


2 + ...


comment A problem are non-analytic terms: there are no precautions
        taken to detect or handle them;


taylor (sqrt (x), x, 0, 2);


***** Zero divisor 

***** Error during expansion (possible singularity!) 


taylor (e**(1/x), x, 0, 2);


***** Zero divisor 

***** Error during expansion (possible singularity!) 


comment Even worse: you can substitute a non analytical kernel;


sub (y = sqrt (x), yy);


               1         2    1         3    1          4
1 + SQRT(X) + ---*SQRT(X)  + ---*SQRT(X)  + ----*SQRT(X)  + ...
               2              6              24


comment Expansion about infinity is possible in principle...;


taylor (e**(1/x), x, infinity, 5);


     1     1   1      1   1      1    1       1    1
1 + --- + ---*---- + ---*---- + ----*---- + -----*---- + ...
     X     2    2     6    3     24    4     120    5
               X          X           X            X

xi := taylor (sin (1/x), x, infinity, 5);


       1      - 1   1       1    1
XI := --- + ------*---- + -----*---- + ...
       X      6      3     120    5
                    X            X


y1 := taylor(x/(x-1), x, infinity, 3);


           1     1      1
Y1 := 1 + --- + ---- + ---- + ...
           X      2      3
                 X      X

z := df(y1, x);


         1        1        1
Z :=  - ---- - 2*---- - 3*---- + ...
          2        3        4
         X        X        X


comment ...but far from being perfect;


taylor (1 / sin (x), x, infinity, 5);


***** Zero divisor 

***** Error during expansion (possible singularity!) 


comment The template of a Taylor kernel can be extracted;


taylortemplate yy;


{{Y,0,4}}


taylortemplate xxa;


{{X,1,2}}


taylortemplate xi;


{{X,INFINITY,5}}


taylortemplate xy;


{{X,0,2},{Y,0,2}}


taylortemplate xx1;


{{{X,Y},0,2}}


comment Here is a slightly less trivial example;


exp := (sin (x) * sin (y) / (x * y))**2;


              2       2
        SIN(X) *SIN(Y)
EXP := -----------------
              2  2
             X *Y


taylor (exp, x, 0, 1, y, 0, 1);


1 + ...

taylor (exp, x, 0, 2, y, 0, 2);


      - 1   2     - 1   2    1   2  2
1 + ------*Y  + ------*X  + ---*Y *X  + ...
      3           3          9


tt := taylor (exp, {x,y}, 0, 2);


            - 1   2     - 1   2
TT := 1 + ------*Y  + ------*X  + ...
            3           3


comment An application is the problem posed by Prof. Stanley:
        we prove that the finite difference expression below
        corresponds to the given derivative expression;


comment We use gg to avoid conflicts with the predefined g operator;


define g=gg;



operator diff,a,f,g;



for all f,arg let diff(f,arg) = df(f,arg);



derivative!_expression :=
diff(a(x,y)*diff(g(x,y),x)*diff(g(x,y),y)*diff(f(x,y),y),x) +
diff(a(x,y)*diff(g(x,y),x)*diff(g(x,y),y)*diff(f(x,y),x),y) ;


DERIVATIVE_EXPRESSION := 

2*A(X,Y)*DF(F(X,Y),X,Y)*DF(GG(X,Y),X)*DF(GG(X,Y),Y)

 + A(X,Y)*DF(F(X,Y),X)*DF(GG(X,Y),X,Y)*DF(GG(X,Y),Y)

 + A(X,Y)*DF(F(X,Y),X)*DF(GG(X,Y),X)*DF(GG(X,Y),Y,2)

 + A(X,Y)*DF(F(X,Y),Y)*DF(GG(X,Y),X,Y)*DF(GG(X,Y),X)

 + A(X,Y)*DF(F(X,Y),Y)*DF(GG(X,Y),X,2)*DF(GG(X,Y),Y)

 + DF(A(X,Y),X)*DF(F(X,Y),Y)*DF(GG(X,Y),X)*DF(GG(X,Y),Y)

 + DF(A(X,Y),Y)*DF(F(X,Y),X)*DF(GG(X,Y),X)*DF(GG(X,Y),Y)


finite!_difference!_expression :=
+a(x+dx,y+dy)*f(x+dx,y+dy)*g(x+dx,y+dy)^2/(32*dx^2*dy^2)
+a(x+dx,y)*f(x+dx,y+dy)*g(x+dx,y+dy)^2/(32*dx^2*dy^2)
+a(x,y+dy)*f(x+dx,y+dy)*g(x+dx,y+dy)^2/(32*dx^2*dy^2)
+a(x,y)*f(x+dx,y+dy)*g(x+dx,y+dy)^2/(32*dx^2*dy^2)
-f(x,y)*a(x+dx,y+dy)*g(x+dx,y+dy)^2/(32*dx^2*dy^2)
-f(x,y)*a(x+dx,y)*g(x+dx,y+dy)^2/(32*dx^2*dy^2)
-f(x,y)*a(x,y+dy)*g(x+dx,y+dy)^2/(32*dx^2*dy^2)
-a(x,y)*f(x,y)*g(x+dx,y+dy)^2/(32*dx^2*dy^2)
-g(x,y)*a(x+dx,y+dy)*f(x+dx,y+dy)*g(x+dx,y+dy)/(16*dx^2*dy^2)
-g(x,y)*a(x+dx,y)*f(x+dx,y+dy)*g(x+dx,y+dy)/(16*dx^2*dy^2)
-g(x,y)*a(x,y+dy)*f(x+dx,y+dy)*g(x+dx,y+dy)/(16*dx^2*dy^2)
-a(x,y)*g(x,y)*f(x+dx,y+dy)*g(x+dx,y+dy)/(16*dx^2*dy^2)
+f(x,y)*g(x,y)*a(x+dx,y+dy)*g(x+dx,y+dy)/(16*dx^2*dy^2)
+f(x,y)*g(x,y)*a(x+dx,y)*g(x+dx,y+dy)/(16*dx^2*dy^2)
+f(x,y)*g(x,y)*a(x,y+dy)*g(x+dx,y+dy)/(16*dx^2*dy^2)
+a(x,y)*f(x,y)*g(x,y)*g(x+dx,y+dy)/(16*dx^2*dy^2)
-g(x+dx,y)^2*a(x+dx,y+dy)*f(x+dx,y+dy)/(32*dx^2*dy^2)
+g(x,y+dy)*g(x+dx,y)*a(x+dx,y+dy)*f(x+dx,y+dy)/(16*dx^2*dy^2)
-g(x,y+dy)^2*a(x+dx,y+dy)*f(x+dx,y+dy)/(32*dx^2*dy^2)
+g(x,y)^2*a(x+dx,y+dy)*f(x+dx,y+dy)/(32*dx^2*dy^2)
-a(x+dx,y)*g(x+dx,y)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
-a(x,y+dy)*g(x+dx,y)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
-a(x,y)*g(x+dx,y)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
+g(x,y+dy)*a(x+dx,y)*g(x+dx,y)*f(x+dx,y+dy)/(16*dx^2*dy^2)
+a(x,y+dy)*g(x,y+dy)*g(x+dx,y)*f(x+dx,y+dy)/(16*dx^2*dy^2)
+a(x,y)*g(x,y+dy)*g(x+dx,y)*f(x+dx,y+dy)/(16*dx^2*dy^2)
-g(x,y+dy)^2*a(x+dx,y)*f(x+dx,y+dy)/(32*dx^2*dy^2)
+g(x,y)^2*a(x+dx,y)*f(x+dx,y+dy)/(32*dx^2*dy^2)
-a(x,y+dy)*g(x,y+dy)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
-a(x,y)*g(x,y+dy)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
+g(x,y)^2*a(x,y+dy)*f(x+dx,y+dy)/(32*dx^2*dy^2)
+a(x,y)*g(x,y)^2*f(x+dx,y+dy)/(32*dx^2*dy^2)
+f(x,y)*g(x+dx,y)^2*a(x+dx,y+dy)/(32*dx^2*dy^2)
-f(x,y)*g(x,y+dy)*g(x+dx,y)*a(x+dx,y+dy)/(16*dx^2*dy^2)
+f(x,y)*g(x,y+dy)^2*a(x+dx,y+dy)/(32*dx^2*dy^2)
-f(x,y)*g(x,y)^2*a(x+dx,y+dy)/(32*dx^2*dy^2)
+a(x+dx,y-dy)*f(x+dx,y-dy)*g(x+dx,y-dy)^2/(32*dx^2*dy^2)
+a(x+dx,y)*f(x+dx,y-dy)*g(x+dx,y-dy)^2/(32*dx^2*dy^2)
+a(x,y-dy)*f(x+dx,y-dy)*g(x+dx,y-dy)^2/(32*dx^2*dy^2)
+a(x,y)*f(x+dx,y-dy)*g(x+dx,y-dy)^2/(32*dx^2*dy^2)
-f(x,y)*a(x+dx,y-dy)*g(x+dx,y-dy)^2/(32*dx^2*dy^2)
-f(x,y)*a(x+dx,y)*g(x+dx,y-dy)^2/(32*dx^2*dy^2)
-f(x,y)*a(x,y-dy)*g(x+dx,y-dy)^2/(32*dx^2*dy^2)
-a(x,y)*f(x,y)*g(x+dx,y-dy)^2/(32*dx^2*dy^2)
-g(x,y)*a(x+dx,y-dy)*f(x+dx,y-dy)*g(x+dx,y-dy)/(16*dx^2*dy^2)
-g(x,y)*a(x+dx,y)*f(x+dx,y-dy)*g(x+dx,y-dy)/(16*dx^2*dy^2)
-g(x,y)*a(x,y-dy)*f(x+dx,y-dy)*g(x+dx,y-dy)/(16*dx^2*dy^2)
-a(x,y)*g(x,y)*f(x+dx,y-dy)*g(x+dx,y-dy)/(16*dx^2*dy^2)
+f(x,y)*g(x,y)*a(x+dx,y-dy)*g(x+dx,y-dy)/(16*dx^2*dy^2)
+f(x,y)*g(x,y)*a(x+dx,y)*g(x+dx,y-dy)/(16*dx^2*dy^2)
+f(x,y)*g(x,y)*a(x,y-dy)*g(x+dx,y-dy)/(16*dx^2*dy^2)
+a(x,y)*f(x,y)*g(x,y)*g(x+dx,y-dy)/(16*dx^2*dy^2)
-g(x+dx,y)^2*a(x+dx,y-dy)*f(x+dx,y-dy)/(32*dx^2*dy^2)
+g(x,y-dy)*g(x+dx,y)*a(x+dx,y-dy)*f(x+dx,y-dy)/(16*dx^2*dy^2)
-g(x,y-dy)^2*a(x+dx,y-dy)*f(x+dx,y-dy)/(32*dx^2*dy^2)
+g(x,y)^2*a(x+dx,y-dy)*f(x+dx,y-dy)/(32*dx^2*dy^2)
-a(x+dx,y)*g(x+dx,y)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
-a(x,y-dy)*g(x+dx,y)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
-a(x,y)*g(x+dx,y)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
+g(x,y-dy)*a(x+dx,y)*g(x+dx,y)*f(x+dx,y-dy)/(16*dx^2*dy^2)
+a(x,y-dy)*g(x,y-dy)*g(x+dx,y)*f(x+dx,y-dy)/(16*dx^2*dy^2)
+a(x,y)*g(x,y-dy)*g(x+dx,y)*f(x+dx,y-dy)/(16*dx^2*dy^2)
-g(x,y-dy)^2*a(x+dx,y)*f(x+dx,y-dy)/(32*dx^2*dy^2)
+g(x,y)^2*a(x+dx,y)*f(x+dx,y-dy)/(32*dx^2*dy^2)
-a(x,y-dy)*g(x,y-dy)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
-a(x,y)*g(x,y-dy)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
+g(x,y)^2*a(x,y-dy)*f(x+dx,y-dy)/(32*dx^2*dy^2)
+a(x,y)*g(x,y)^2*f(x+dx,y-dy)/(32*dx^2*dy^2)
+f(x,y)*g(x+dx,y)^2*a(x+dx,y-dy)/(32*dx^2*dy^2)
-f(x,y)*g(x,y-dy)*g(x+dx,y)*a(x+dx,y-dy)/(16*dx^2*dy^2)
+f(x,y)*g(x,y-dy)^2*a(x+dx,y-dy)/(32*dx^2*dy^2)
-f(x,y)*g(x,y)^2*a(x+dx,y-dy)/(32*dx^2*dy^2)
+f(x,y)*a(x+dx,y)*g(x+dx,y)^2/(16*dx^2*dy^2)
+f(x,y)*a(x,y+dy)*g(x+dx,y)^2/(32*dx^2*dy^2)
+f(x,y)*a(x,y-dy)*g(x+dx,y)^2/(32*dx^2*dy^2)
+a(x,y)*f(x,y)*g(x+dx,y)^2/(16*dx^2*dy^2)
-f(x,y)*g(x,y+dy)*a(x+dx,y)*g(x+dx,y)/(16*dx^2*dy^2)
-f(x,y)*g(x,y-dy)*a(x+dx,y)*g(x+dx,y)/(16*dx^2*dy^2)
-f(x,y)*a(x,y+dy)*g(x,y+dy)*g(x+dx,y)/(16*dx^2*dy^2)
-a(x,y)*f(x,y)*g(x,y+dy)*g(x+dx,y)/(16*dx^2*dy^2)
-f(x,y)*a(x,y-dy)*g(x,y-dy)*g(x+dx,y)/(16*dx^2*dy^2)
-a(x,y)*f(x,y)*g(x,y-dy)*g(x+dx,y)/(16*dx^2*dy^2)
+f(x,y)*g(x,y+dy)^2*a(x+dx,y)/(32*dx^2*dy^2)
+f(x,y)*g(x,y-dy)^2*a(x+dx,y)/(32*dx^2*dy^2)
-f(x,y)*g(x,y)^2*a(x+dx,y)/(16*dx^2*dy^2)
+a(x-dx,y+dy)*f(x-dx,y+dy)*g(x-dx,y+dy)^2/(32*dx^2*dy^2)
+a(x-dx,y)*f(x-dx,y+dy)*g(x-dx,y+dy)^2/(32*dx^2*dy^2)
+a(x,y+dy)*f(x-dx,y+dy)*g(x-dx,y+dy)^2/(32*dx^2*dy^2)
+a(x,y)*f(x-dx,y+dy)*g(x-dx,y+dy)^2/(32*dx^2*dy^2)
-f(x,y)*a(x-dx,y+dy)*g(x-dx,y+dy)^2/(32*dx^2*dy^2)
-f(x,y)*a(x-dx,y)*g(x-dx,y+dy)^2/(32*dx^2*dy^2)
-f(x,y)*a(x,y+dy)*g(x-dx,y+dy)^2/(32*dx^2*dy^2)
-a(x,y)*f(x,y)*g(x-dx,y+dy)^2/(32*dx^2*dy^2)
-g(x,y)*a(x-dx,y+dy)*f(x-dx,y+dy)*g(x-dx,y+dy)/(16*dx^2*dy^2)
-g(x,y)*a(x-dx,y)*f(x-dx,y+dy)*g(x-dx,y+dy)/(16*dx^2*dy^2)
-g(x,y)*a(x,y+dy)*f(x-dx,y+dy)*g(x-dx,y+dy)/(16*dx^2*dy^2)
-a(x,y)*g(x,y)*f(x-dx,y+dy)*g(x-dx,y+dy)/(16*dx^2*dy^2)
+f(x,y)*g(x,y)*a(x-dx,y+dy)*g(x-dx,y+dy)/(16*dx^2*dy^2)
+f(x,y)*g(x,y)*a(x-dx,y)*g(x-dx,y+dy)/(16*dx^2*dy^2)
+f(x,y)*g(x,y)*a(x,y+dy)*g(x-dx,y+dy)/(16*dx^2*dy^2)
+a(x,y)*f(x,y)*g(x,y)*g(x-dx,y+dy)/(16*dx^2*dy^2)
-g(x-dx,y)^2*a(x-dx,y+dy)*f(x-dx,y+dy)/(32*dx^2*dy^2)
+g(x,y+dy)*g(x-dx,y)*a(x-dx,y+dy)*f(x-dx,y+dy)/(16*dx^2*dy^2)
-g(x,y+dy)^2*a(x-dx,y+dy)*f(x-dx,y+dy)/(32*dx^2*dy^2)
+g(x,y)^2*a(x-dx,y+dy)*f(x-dx,y+dy)/(32*dx^2*dy^2)
-a(x-dx,y)*g(x-dx,y)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
-a(x,y+dy)*g(x-dx,y)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
-a(x,y)*g(x-dx,y)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
+g(x,y+dy)*a(x-dx,y)*g(x-dx,y)*f(x-dx,y+dy)/(16*dx^2*dy^2)
+a(x,y+dy)*g(x,y+dy)*g(x-dx,y)*f(x-dx,y+dy)/(16*dx^2*dy^2)
+a(x,y)*g(x,y+dy)*g(x-dx,y)*f(x-dx,y+dy)/(16*dx^2*dy^2)
-g(x,y+dy)^2*a(x-dx,y)*f(x-dx,y+dy)/(32*dx^2*dy^2)
+g(x,y)^2*a(x-dx,y)*f(x-dx,y+dy)/(32*dx^2*dy^2)
-a(x,y+dy)*g(x,y+dy)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
-a(x,y)*g(x,y+dy)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
+g(x,y)^2*a(x,y+dy)*f(x-dx,y+dy)/(32*dx^2*dy^2)
+a(x,y)*g(x,y)^2*f(x-dx,y+dy)/(32*dx^2*dy^2)
+f(x,y)*g(x-dx,y)^2*a(x-dx,y+dy)/(32*dx^2*dy^2)
-f(x,y)*g(x,y+dy)*g(x-dx,y)*a(x-dx,y+dy)/(16*dx^2*dy^2)
+f(x,y)*g(x,y+dy)^2*a(x-dx,y+dy)/(32*dx^2*dy^2)
-f(x,y)*g(x,y)^2*a(x-dx,y+dy)/(32*dx^2*dy^2)
+a(x-dx,y-dy)*f(x-dx,y-dy)*g(x-dx,y-dy)^2/(32*dx^2*dy^2)
+a(x-dx,y)*f(x-dx,y-dy)*g(x-dx,y-dy)^2/(32*dx^2*dy^2)
+a(x,y-dy)*f(x-dx,y-dy)*g(x-dx,y-dy)^2/(32*dx^2*dy^2)
+a(x,y)*f(x-dx,y-dy)*g(x-dx,y-dy)^2/(32*dx^2*dy^2)
-f(x,y)*a(x-dx,y-dy)*g(x-dx,y-dy)^2/(32*dx^2*dy^2)
-f(x,y)*a(x-dx,y)*g(x-dx,y-dy)^2/(32*dx^2*dy^2)
-f(x,y)*a(x,y-dy)*g(x-dx,y-dy)^2/(32*dx^2*dy^2)
-a(x,y)*f(x,y)*g(x-dx,y-dy)^2/(32*dx^2*dy^2)
-g(x,y)*a(x-dx,y-dy)*f(x-dx,y-dy)*g(x-dx,y-dy)/(16*dx^2*dy^2)
-g(x,y)*a(x-dx,y)*f(x-dx,y-dy)*g(x-dx,y-dy)/(16*dx^2*dy^2)
-g(x,y)*a(x,y-dy)*f(x-dx,y-dy)*g(x-dx,y-dy)/(16*dx^2*dy^2)
-a(x,y)*g(x,y)*f(x-dx,y-dy)*g(x-dx,y-dy)/(16*dx^2*dy^2)
+f(x,y)*g(x,y)*a(x-dx,y-dy)*g(x-dx,y-dy)/(16*dx^2*dy^2)
+f(x,y)*g(x,y)*a(x-dx,y)*g(x-dx,y-dy)/(16*dx^2*dy^2)
+f(x,y)*g(x,y)*a(x,y-dy)*g(x-dx,y-dy)/(16*dx^2*dy^2)
+a(x,y)*f(x,y)*g(x,y)*g(x-dx,y-dy)/(16*dx^2*dy^2)
-g(x-dx,y)^2*a(x-dx,y-dy)*f(x-dx,y-dy)/(32*dx^2*dy^2)
+g(x,y-dy)*g(x-dx,y)*a(x-dx,y-dy)*f(x-dx,y-dy)/(16*dx^2*dy^2)
-g(x,y-dy)^2*a(x-dx,y-dy)*f(x-dx,y-dy)/(32*dx^2*dy^2)
+g(x,y)^2*a(x-dx,y-dy)*f(x-dx,y-dy)/(32*dx^2*dy^2)
-a(x-dx,y)*g(x-dx,y)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
-a(x,y-dy)*g(x-dx,y)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
-a(x,y)*g(x-dx,y)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
+g(x,y-dy)*a(x-dx,y)*g(x-dx,y)*f(x-dx,y-dy)/(16*dx^2*dy^2)
+a(x,y-dy)*g(x,y-dy)*g(x-dx,y)*f(x-dx,y-dy)/(16*dx^2*dy^2)
+a(x,y)*g(x,y-dy)*g(x-dx,y)*f(x-dx,y-dy)/(16*dx^2*dy^2)
-g(x,y-dy)^2*a(x-dx,y)*f(x-dx,y-dy)/(32*dx^2*dy^2)
+g(x,y)^2*a(x-dx,y)*f(x-dx,y-dy)/(32*dx^2*dy^2)
-a(x,y-dy)*g(x,y-dy)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
-a(x,y)*g(x,y-dy)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
+g(x,y)^2*a(x,y-dy)*f(x-dx,y-dy)/(32*dx^2*dy^2)
+a(x,y)*g(x,y)^2*f(x-dx,y-dy)/(32*dx^2*dy^2)
+f(x,y)*g(x-dx,y)^2*a(x-dx,y-dy)/(32*dx^2*dy^2)
-f(x,y)*g(x,y-dy)*g(x-dx,y)*a(x-dx,y-dy)/(16*dx^2*dy^2)
+f(x,y)*g(x,y-dy)^2*a(x-dx,y-dy)/(32*dx^2*dy^2)
-f(x,y)*g(x,y)^2*a(x-dx,y-dy)/(32*dx^2*dy^2)
+f(x,y)*a(x-dx,y)*g(x-dx,y)^2/(16*dx^2*dy^2)
+f(x,y)*a(x,y+dy)*g(x-dx,y)^2/(32*dx^2*dy^2)
+f(x,y)*a(x,y-dy)*g(x-dx,y)^2/(32*dx^2*dy^2)
+a(x,y)*f(x,y)*g(x-dx,y)^2/(16*dx^2*dy^2)
-f(x,y)*g(x,y+dy)*a(x-dx,y)*g(x-dx,y)/(16*dx^2*dy^2)
-f(x,y)*g(x,y-dy)*a(x-dx,y)*g(x-dx,y)/(16*dx^2*dy^2)
-f(x,y)*a(x,y+dy)*g(x,y+dy)*g(x-dx,y)/(16*dx^2*dy^2)
-a(x,y)*f(x,y)*g(x,y+dy)*g(x-dx,y)/(16*dx^2*dy^2)
-f(x,y)*a(x,y-dy)*g(x,y-dy)*g(x-dx,y)/(16*dx^2*dy^2)
-a(x,y)*f(x,y)*g(x,y-dy)*g(x-dx,y)/(16*dx^2*dy^2)
+f(x,y)*g(x,y+dy)^2*a(x-dx,y)/(32*dx^2*dy^2)
+f(x,y)*g(x,y-dy)^2*a(x-dx,y)/(32*dx^2*dy^2)
-f(x,y)*g(x,y)^2*a(x-dx,y)/(16*dx^2*dy^2)
+f(x,y)*a(x,y+dy)*g(x,y+dy)^2/(16*dx^2*dy^2)
+a(x,y)*f(x,y)*g(x,y+dy)^2/(16*dx^2*dy^2)
-f(x,y)*g(x,y)^2*a(x,y+dy)/(16*dx^2*dy^2)
+f(x,y)*a(x,y-dy)*g(x,y-dy)^2/(16*dx^2*dy^2)
+a(x,y)*f(x,y)*g(x,y-dy)^2/(16*dx^2*dy^2)
-f(x,y)*g(x,y)^2*a(x,y-dy)/(16*dx^2*dy^2)
-a(x,y)*f(x,y)*g(x,y)^2/(8*dx^2*dy^2)$



comment We define abbreviations for the partial derivatives;


operator ax,ay,fx,fy,gx,gy;



for all x,y let df(a(x,y),x) = ax(x,y);


for all x,y let df(a(x,y),y) = ay(x,y);


for all x,y let df(f(x,y),x) = fx(x,y);


for all x,y let df(f(x,y),y) = fy(x,y);


for all x,y let df(g(x,y),x) = gx(x,y);


for all x,y let df(g(x,y),y) = gy(x,y);



operator axx,axy,ayy,fxx,fxy,fyy,gxx,gxy,gyy;



for all x,y let df(ax(x,y),x) = axx(x,y);


for all x,y let df(ax(x,y),y) = axy(x,y);


for all x,y let df(ay(x,y),x) = axy(x,y);


for all x,y let df(ay(x,y),y) = ayy(x,y);


for all x,y let df(fx(x,y),x) = fxx(x,y);


for all x,y let df(fx(x,y),y) = fxy(x,y);


for all x,y let df(fy(x,y),x) = fxy(x,y);


for all x,y let df(fy(x,y),y) = fyy(x,y);


for all x,y let df(gx(x,y),x) = gxx(x,y);


for all x,y let df(gx(x,y),y) = gxy(x,y);


for all x,y let df(gy(x,y),x) = gxy(x,y);


for all x,y let df(gy(x,y),y) = gyy(x,y);



operator axxx,axxy,axyy,ayyy,fxxx,fxxy,fxyy,fyyy,gxxx,gxxy,gxyy,gyyy;



for all x,y let df(axx(x,y),x) = axxx(x,y);


for all x,y let df(axy(x,y),x) = axxy(x,y);


for all x,y let df(ayy(x,y),x) = axyy(x,y);


for all x,y let df(ayy(x,y),y) = ayyy(x,y);


for all x,y let df(fxx(x,y),x) = fxxx(x,y);


for all x,y let df(fxy(x,y),x) = fxxy(x,y);


for all x,y let df(fxy(x,y),y) = fxyy(x,y);


for all x,y let df(fyy(x,y),x) = fxyy(x,y);


for all x,y let df(fyy(x,y),y) = fyyy(x,y);


for all x,y let df(gxx(x,y),x) = gxxx(x,y);


for all x,y let df(gxx(x,y),y) = gxxy(x,y);


for all x,y let df(gxy(x,y),x) = gxxy(x,y);


for all x,y let df(gxy(x,y),y) = gxyy(x,y);


for all x,y let df(gyy(x,y),x) = gxyy(x,y);


for all x,y let df(gyy(x,y),y) = gyyy(x,y);



operator axxxy,axxyy,axyyy,fxxxy,fxxyy,fxyyy,
         gxxxx,gxxxy,gxxyy,gxyyy,gyyyy;



for all x,y let df(axyy(x,y),x) = axxyy(x,y);


for all x,y let df(axxy(x,y),x) = axxxy(x,y);


for all x,y let df(ayyy(x,y),x) = axyyy(x,y);


for all x,y let df(fxxy(x,y),x) = fxxxy(x,y);


for all x,y let df(fxyy(x,y),x) = fxxyy(x,y);


for all x,y let df(fyyy(x,y),x) = fxyyy(x,y);


for all x,y let df(gxxx(x,y),x) = gxxxx(x,y);


for all x,y let df(gxxy(x,y),x) = gxxxy(x,y);


for all x,y let df(gxyy(x,y),x) = gxxyy(x,y);


for all x,y let df(gyyy(x,y),x) = gxyyy(x,y);


for all x,y let df(gyyy(x,y),y) = gyyyy(x,y);



operator axxxyy,axxyyy,fxxyyy,fxxxyy,gxxxxy,gxxxyy,gxxyyy,gxyyyy;



for all x,y let df(axxyy(x,y),x) = axxxyy(x,y);


for all x,y let df(axyyy(x,y),x) = axxyyy(x,y);


for all x,y let df(fxxyy(x,y),x) = fxxxyy(x,y);


for all x,y let df(fxyyy(x,y),x) = fxxyyy(x,y);


for all x,y let df(gxxxy(x,y),x) = gxxxxy(x,y);


for all x,y let df(gxxyy(x,y),x) = gxxxyy(x,y);


for all x,y let df(gxyyy(x,y),x) = gxxyyy(x,y);


for all x,y let df(gyyyy(x,y),x) = gxyyyy(x,y);



operator gxxxxyy,gxxxyyy,gxxyyyy;



for all x,y let df(gxxxyy(x,y),x) = gxxxxyy(x,y);


for all x,y let df(gxxyyy(x,y),x) = gxxxyyy(x,y);


for all x,y let df(gxyyyy(x,y),x) = gxxyyyy(x,y);



texp := taylor (finite!_difference!_expression, dx, 0, 1, dy, 0, 1);


TEXP := A(X,Y)*FX(X,Y)*GX(X,Y)*GYY(X,Y)

         + A(X,Y)*FX(X,Y)*GY(X,Y)*GXY(X,Y)

         + A(X,Y)*FY(X,Y)*GX(X,Y)*GXY(X,Y)

         + A(X,Y)*FY(X,Y)*GY(X,Y)*GXX(X,Y)

         + 2*A(X,Y)*GX(X,Y)*GY(X,Y)*FXY(X,Y)

         + AX(X,Y)*FY(X,Y)*GX(X,Y)*GY(X,Y)

         + AY(X,Y)*FX(X,Y)*GX(X,Y)*GY(X,Y) + ...


comment You may also try to expand further but this needs a lot
        of CPU time.  Therefore the following line is commented out;


%texp := taylor (finite!_difference!_expression, dx, 0, 2, dy, 0, 2);

factor dx,dy;



result := taylortostandard texp;


RESULT := A(X,Y)*FX(X,Y)*GX(X,Y)*GYY(X,Y)

           + A(X,Y)*FX(X,Y)*GY(X,Y)*GXY(X,Y)

           + A(X,Y)*FY(X,Y)*GX(X,Y)*GXY(X,Y)

           + A(X,Y)*FY(X,Y)*GY(X,Y)*GXX(X,Y)

           + 2*A(X,Y)*GX(X,Y)*GY(X,Y)*FXY(X,Y)

           + AX(X,Y)*FY(X,Y)*GX(X,Y)*GY(X,Y)

           + AY(X,Y)*FX(X,Y)*GX(X,Y)*GY(X,Y)


derivative!_expression - result;


0


comment That's all, folks;


showtime;


Time: 19924 ms


end;

4: 4: 
Quitting
Sat Jun 29 14:12:56 PDT 1991


REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]