File r37/packages/assist/auxitens.red artifact 1cd32a56e8 part of check-in 2f3b3fd537


module auxitens;

% this module introduces basic manipulation functions 
% for handling indices and tensor structure

lisp remflag(list 'minus,'intfn);

global '(dimex!* sgn!*  signat!* spaces!* numindxl!* pair_id_num!*) ;


lisp (pair_id_num!*:= '((!0 . 0) (!1 . 1) (!2 . 2) (!3 . 3) (!4 . 4)                      
                        (!5 . 5) (!6 . 6) (!7 . 7) (!8 . 8) (!9 . 9)                      
                        (!10 . 10) (!11 . 11) (!12 . 12) (!13 . 13)));

fluid('(dummy_id!* g_dvnames epsilon!*)); 

% g_dvnames is a vector. 


switch onespace;

!*onespace:=t;  % working inside a unique space is the default.


symbolic procedure raiseind!: u;
if atom u then u else raiseind u;

symbolic procedure lowerind_lst u;
% u is a list of indices.
% transforms into a list of covariant indices
for each j in u collect lowerind j;

symbolic procedure raiseind_lst u;
% u is a list of indices.
% transforms into a list of contravariant indices
for each j in u collect raiseind!: j;

symbolic procedure flatindxl u;
% This is taken from EXCALC
 for each j in u collect 
   if atom j 
     then j 
     else if careq_minus(j) 
            then cadr j 
            else cdr j;

symbolic procedure cov_lst_idsp u;
% True if all indices in list u are covariant
 if null u then t 
 else 
 if careq_minus car u then cov_lst_idsp cdr u;

symbolic procedure cont_lst_idsp u;
% True if all indices in list u are contravariant
 if null u then t 
 else 
 if atom car u then cont_lst_idsp cdr u;

symbolic procedure identify_pos_cov_lst(u,i);
% allows to get the position of a fully covariant list
% u is a list of lists
% returns i which is the position of the FIRST relevant list in u.
% starting value of i is zero.
 if null u then 
       if i=0 then nil 
       else i-1 
 else
 if cov_lst_idsp car u then i:=i+1 
 else
 identify_pos_cov_lst(cdr u,i+1);

symbolic procedure identify_pos_cont_lst(u,i);
% allows to get the position of a fully contravariant list
% u is a list of lists
% returns i which is the position of the FIRST relevant list in u.
% starting value of i is zero.
 if null u then 
      if i=0 then nil 
      else i-1
 else 
 if cont_lst_idsp car u then i:=i+1 
 else
 identify_pos_cont_lst(cdr u,i+1);

symbolic procedure splitlist!: (u,idp);                                         
% EXTRACTS THE SUBLIST OF ELEMENTS WHOSE CAR ARE EQUAL THE IDP.                  
% TAG.
% taken from my old tensor package.                                                                          
  if null u then nil 
  else
  if eqcar(car u,idp) then car u . splitlist!:(cdr u,idp)
  else splitlist!:(cdr u,idp);

symbolic procedure list_to_ids!: l;
if atom l then rederr "argument for list_to_ids must be a list"
else
intern compress for each i in l join explode i;


symbolic procedure split!:(u,v);
% split!:(list(a,b,c),list(1,1,1)); ==> {{A},{B},{C}}
% No longer used below but ...
if listp u and listp v then
 begin scalar x;
    return for each n in v collect
             for i := 1:n collect
                 <<x := car u; u := rest u; x>>
    end;


symbolic procedure symtree_splitlst(idtens,lsy,bool);
% idtens is the tensor indices argument list and lsy 
% is cdr of symtree.
% output is the splitted indices list which mirrors lsy
% and make partial reordering whenever possible .
for each i in lsy collect 
          if bool and car i memq {'!+,'!-} then 
              ordn for each j in cdr i collect nth(idtens,j)
           else  for each j in cdr i collect nth(idtens,j);   


symbolic procedure symtree_zerop (idtens,lsym);
% idtens is the list of indices of a given tensor.
% lsym is the symmetry tree list as generated by the 
% 'symtree' operator of DUMMY.RED.
% pseudo-boolean: returns the set of indices which is repeated  or 
% nil.
% It DOES detect MOST but NOT ALL possibilities leaving the rest for 
% canonical.
 if null cdr lsym then nil 
  else 
 if numlis cdr lsym then 
    if car lsym eq '!- and repeats idtens then repeats idtens 
      else nil
  else
% here we start considering proper partial symmetries 
   begin scalar lsy, idt,y;
     if car lsym eq  '!- then
       if (y := repeats symtree_splitlst(idtens,cdr lsym,nil))
	     then return y;
    idt:= symtree_splitlst(idtens,cdr lsym,t);
    if car lsym eq '!- then 
         if (y:=repeats idt) then return y;
   lsy:=for each j in cdr lsym collect car j;
    return partsym_zerop(idt,lsy)
   end;


symbolic procedure partsym_zerop(idt,lsy);
% idt: splitted list of indices
% lsy list of tags for partial symmetries.
% they should have the same lengths
 if null idt then nil 
  else 
 (if car lsy eq '!- and y then y 
  else partsym_zerop(cdr idt,cdr lsy))where y=repeats car idt;


symbolic procedure cont_before_cov u;
% is a list of indices some are covariant 
% others are contravariant
% returns a list with contravariant indices placed 
% in front of the covariant indices.
 begin scalar x;
  x:=splitlist!:(u,'minus);
  return append(setdiff(u,x) ,x)
 end;

endmodule;

end;


REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]