File r34.1/lib/laplace.log artifact bce0b43077 part of check-in 1b32ca91d4


REDUCE 3.4.1, 15-Jul-92 ...

1: 
(LAPLACE)


% Title:  Examples of Laplace Transforms.

% Author: L. Kazasov.

% Date: 24 October 1988.

order p;



% Elementary functions with argument k*x, where x is object var.

laplace(1,x,p);


 1
---
 P

laplace(c,x,p);


 C
---
 P

laplace(sin(k*x),x,p);


    K
---------
  2    2
 P  + K
 laplace(sin(x/a),x,p);


        1
-----------------
  -1   2  2
 A  *(P *A  + 1)

laplace(sin(17*x),x,p);


    17
----------
  2
 P  + 289

laplace(sinh x,x,p);


   1
--------
  2
 P  - 1

laplace(cosh(k*x),x,p);


     - P
------------
     2    2
  - P  + K

laplace(x,x,p);


 1
----
  2
 P
 laplace(x**3,x,p);


 6
----
  4
 P

off mcd;

 laplace(e**(c*x) + a**x, x, s);


                -1          -1
 - ((LOG(A) - S)   + (C - S)  )

laplace(e**x - e**(a*x) + x**2, x, p);


   -3          -1          -1
2*P   + (A - P)   + (P - 1)

laplace(one(k*t) + sin(a*t) - cos(b*t) - e**t, t, p);


       2    2 -1    -1     2    2 -1            -1
 - P*(B  + P )   + P   + (A  + P )  *A - (P - 1)

laplace(sqrt(x),x,p);


               - 3/2
1/2*SQRT(PI)*P
 laplace(x**(1/2),x,p);


               - 3/2
1/2*SQRT(PI)*P
 on mcd;


laplace(x**(-1/2),x,p);


 SQRT(PI)
----------
 SQRT(P)
 laplace(x**(5/2),x,p);


  15
 ----*SQRT(PI)
  8
---------------
           3
  SQRT(P)*P

laplace(-1/4*x**2*c*sqrt(x), x, p);


     15
  - ----*SQRT(PI)*C
     32
--------------------
              3
     SQRT(P)*P


% Elementary functions with argument k*x - tau,
%   where k>0, tau>=0, x is object var.

laplace(cos(x-a),x,p);


       P
---------------
  P*A   2
 E   *(P  + 1)

laplace(one(k*x-tau),x,p);


      1
--------------
  (P*TAU)/K
 E         *P

laplace(sinh(k*x-tau),x,p);


           - K
-------------------------
  (P*TAU)/K      2    2
 E         *( - P  + K )
 laplace(sinh(k*x),x,p);


     - K
------------
     2    2
  - P  + K

laplace((a*x-b)**c,x,p);


  C
 A *GAMMA(C + 1)
-----------------
   C  (P*B)/A
  P *E       *P

% But ...
off mcd;

 laplace((a*x-b)**2,x,p);


 -3   2  2                2
P  *(P *B  - 2*P*A*B + 2*A )
 on mcd;


laplace(sin(2*x-3),x,p);


         2
-------------------
  (3*P)/2   2
 E       *(P  + 4)

on lmon;

 laplace(sin(2*x-3),x,p);


         2
-------------------
  (3*P)/2   2
 E       *(P  + 4)
 off lmon;


off mcd;

 laplace(cosh(t-a) - sin(3*t-5), t, p);


  - P*A     2     -1       - 5/3*P   2     -1
E      *P*(P  - 1)   - 3*E        *(P  + 9)
 on mcd;



% More complicated examples - multiplication of functions.
% We use here on lmon - a new switch that forces all
% trigonometrical functions which depend on object var
% to be represented as exponents.

laplace(x*e**(a*x)*cos(k*x), x, p);


  2            2    2    4      3        2  2      2  2        3
(P  - 2*P*A + A  - K )/(P  - 4*P *A + 6*P *A  + 2*P *K  - 4*P*A

             2    4      2  2    4
    - 4*P*A*K  + A  + 2*A *K  + K )

laplace(x**(1/2)*e**(a*x), x, p);


          1
       - ---*SQRT(PI)
          2
---------------------------
 SQRT( - A + P)*( - P + A)

laplace(-1/4*e**(a*x)*(x-k)**(-1/2), x, p);


     1            A*K
  - ---*SQRT(PI)*E
     4
----------------------
  P*K
 E   *SQRT( - A + P)

laplace(x**(5/2)*e**(a*x), x, p);


                   15
                - ----*SQRT(PI)
                   8
-----------------------------------------------
                     3      2          2    3
 SQRT( - A + P)*( - P  + 3*P *A - 3*P*A  + A )

laplace((a*x-b)**c*e**(k*x)*const/2, x, p);


     1   (B*K)/A  C
  - ---*E       *A *GAMMA(C + 1)*CONST
     2
---------------------------------------
     (P*B)/A           C
    E       *( - K + P) *( - P + K)

off mcd;

 laplace(x*e**(a*x)*sin(7*x)/c*3, x, p);


     2            2      -2  -1
42*(A  - 2*A*P + P  + 49)  *C  *(P - A)
 on mcd;


laplace(x*e**(a*x)*sin(k*x-tau), x, p);


  (A*TAU)/K   2                            2                2
(E         *(P *TAU - 2*P*A*TAU + 2*P*K + A *TAU - 2*A*K + K *TAU))/(

    (P*TAU)/K   4      3        2  2      2  2        3          2
   E         *(P  - 4*P *A + 6*P *A  + 2*P *K  - 4*P*A  - 4*P*A*K

                   4      2  2    4
                + A  + 2*A *K  + K ))

% The next is unknown if lmon is off.
laplace(sin(k*x)*cosh(k*x), x, p);


*** Laplace for SIN(X*K)*COSH(X*K) not known - try ON LMON 

LAPLACE(SIN(K*X)*COSH(K*X),X,P)

laplace(x**(1/2)*sin(k*x), x, p);


*** Laplace for SQRT(X)*SIN(X*K) not known - try ON LMON 

LAPLACE(SQRT(X)*SIN(K*X),X,P)

on lmon;

  % But now is OK.
laplace(x**(1/2)*sin(a*x)*cos(a*b), x, p);


(SQRT(PI)*COS(A*B)*( - SQRT( - A*I + P)*P + SQRT(A*I + P)*P

     + SQRT( - A*I + P)*A*I + SQRT(A*I + P)*A*I))/(4*SQRT(A*I + P)

                         2    2
   *SQRT( - A*I + P)*I*(P  + A ))

laplace(sin(x)*cosh(x), x, p);


  2
 P  + 2
--------
  4
 P  + 4

laplace(sin(k*x)*cosh(k*x), x, p);


     2      2
 K*(P  + 2*K )
---------------
    4      4
   P  + 4*K

off exp;

 laplace(sin(k*x-t)*cosh(k*x-t), x, p);


      2*I*T   ((P + I*K + K)*T)/K
( - (E     *(E                   *(I*K + K + P)

                 ((P + I*K - K)*T + 2*K*T)/K
              + E                           *(I*K - K + P))

     *(I*K + K - P)*(I*K - K - P) + 

      ((P + I*K + K)*T + (P + I*K - K)*T)/K
     E                                     *(

         ( - (P - I*K + K)*T + 2*K*T)/K
        E                              *(I*K + K - P)

             - ((P - I*K - K)*T)/K
         + E                      *(I*K - K - P))*(I*K + K + P)

     *(I*K - K + P)))/(4

     ((I + 1)*K*T + (P + I*K + K)*T + (P + I*K - K)*T)/K
   *E

   *(I*K + K + P)*(I*K + K - P)*(I*K - K + P)*(I*K - K - P)*I)
 on exp;


laplace(cos(x)**2,x,p);


    2
   P  + 2
------------
     2
 P*(P  + 4)
laplace(c*cos(k*x)**2,x,p);


     2      2
 C*(P  + 2*K )
---------------
     2      2
 P*(P  + 4*K )

laplace(c*cos(2/3*x)**2, x, p);


     2    8
 C*(P  + ---)
          9
---------------
     2    16
 P*(P  + ----)
          9

laplace(5*sinh(x)*e**(a*x)*x**3, x, p);


       3      2          2        3         8      7         6  2
(120*(P  - 3*P *A + 3*P*A  + P - A  - A))/(P  - 8*P *A + 28*P *A

         6       5  3       5         4  4       4  2      4
    - 4*P  - 56*P *A  + 24*P *A + 70*P *A  - 60*P *A  + 6*P

          3  5       3  3       3         2  6       2  4       2  2
    - 56*P *A  + 80*P *A  - 24*P *A + 28*P *A  - 60*P *A  + 36*P *A

         2        7         5         3            8      6      4
    - 4*P  - 8*P*A  + 24*P*A  - 24*P*A  + 8*P*A + A  - 4*A  + 6*A

         2
    - 4*A  + 1)

off exp;

 laplace(sin(2*x-3)*cosh(7*x-5), x, p);


  2  11    2         11              11         (3*P + 1)/2
(P *E   + P  + 14*P*E   - 14*P + 53*E   + 53)/(E

                                                             5
   *(2*I + P + 7)*(2*I + P - 7)*(2*I - P + 7)*(2*I - P - 7)*E )
 on exp;


laplace(sin(a*x-b)*cosh(c*x-d), x, p);


*** Laplace for  - 1/4*ONE((X*A - B)/A)*ONE((X*C - D)/C)*I**(-1) not known 

*** Laplace for 1/4*ONE((X*A - B)/A)*ONE((X*C - D)/C)*I**(-1) not known 

             B*I + 2*C*X      A*X - B        C*X - D
LAPLACE(( - E           *ONE(---------)*ONE(---------)
                                 A              C

             B*I + 2*D      A*X - B        C*X - D
          - E         *ONE(---------)*ONE(---------))/(4
                               A              C

             A*I*X + C*X + D
           *E               *I),X,P) + LAPLACE((

       A*I*X + 2*C*X      A*X - B        C*X - D
      E             *ONE(---------)*ONE(---------)
                             A              C

          A*I*X + 2*D      A*X - B        C*X - D
       + E           *ONE(---------)*ONE(---------))/(4
                              A              C

        B*I + C*X + D
      *E             *I),X,P)

% To solve this problem we must tell the program which one-function
% is rightmost shifted.  However, in REDUCE 3.4, this rule is still
% not sufficient.
for all x let one(x-b/a)*one(x-d/c) = one(x-b/a);


laplace(sin(a*x-b)*cosh(c*x-d), x, p);


*** Laplace for  - 1/4*ONE((X*A - B)/A)*ONE( - A**(-1)*B + X)**(-1)*
ONE(X - A**(-1)*B)*I**(-1) not known 

*** Laplace for 1/4*ONE((X*A - B)/A)*ONE( - A**(-1)*B + X)**(-1)*ONE(
X - A**(-1)*B)*I**(-1) not known 

             B*I + 2*C*X      A*X - B      B*I + 2*D      A*X - B
          - E           *ONE(---------) - E         *ONE(---------)
                                 A                           A
LAPLACE(------------------------------------------------------------,
                               A*I*X + C*X + D
                            4*E               *I

        X,P) + LAPLACE(

     A*I*X + 2*C*X      A*X - B      A*I*X + 2*D      A*X - B
    E             *ONE(---------) + E           *ONE(---------)
                           A                             A
   -------------------------------------------------------------,X,P)
                           B*I + C*X + D
                        4*E             *I

for all x clear one(x-b/a)*one(x-d/c) ;


off lmon;



% Floating point arithmetic.
% laplace(3.5/c*sin(2.3*x-4.11)*e**(1.5*x), x, p);
on rounded;


laplace(3.5/c*sin(2.3*x-4.11)*e**(1.5*x), x, p);


             117.461059957
----------------------------------------
  1.78695652174*P     2
 E               *C*(P  - 3.0*P + 7.54)

laplace(x**2.156,x,p);


 GAMMA(3.156)
--------------
     3.156
    P

laplace(x**(-0.5),x,p);


 GAMMA(0.5)
------------
     0.5
    P

off rounded;

 laplace(x**(-0.5),x,p);


 SQRT(PI)
----------
 SQRT(P)
 on rounded;


laplace(x*e**(2.35*x)*cos(7.42*x), x, p);


                   2
                  P  - 4.7*P - 49.5339
---------------------------------------------------------
  4        3             2
 P  - 9.4*P  + 143.2478*P  - 569.44166*P + 3669.80312521

laplace(x*e**(2.35*x)*cos(7.42*x-74.2), x, p);


                 3                    2
(160664647206.0*P  - 1116619298080.0*P  + 11431916240900.0*P

                        10.0*P
  - 23668120508900.0)/(E

      4        3             2
   *(P  - 9.4*P  + 143.2478*P  - 569.44166*P + 3669.80312521))

% Higher precision works, but uses more memory.
% precision 20; laplace(x**2.156,x,p);
% laplace(x*e**(2.35*x)*cos(7.42*x-74.2), x, p);
off rounded;



% Integral from 0 to x, where x is object var.
% Syntax is intl(<expr>,<var>,0,<obj.var>).

laplace(c1/c2*intl(2*y**2,y,0,x), x,p);


 4*C1
-------
  4
 P *C2

off mcd;

 laplace(intl(e**(2*y)*y**2+sqrt(y),y,0,x),x,p);


 -1           -3                  - 3/2
P  *(2*(P - 2)   + 1/2*SQRT(PI)*P      )
 on mcd;


laplace(-2/3*intl(1/2*y*e**(a*y)*sin(k*y),y,0,x), x, p);


        2       2           4      3        2  2      2  2        3
(K*( - ---*P + ---*A))/(P*(P  - 4*P *A + 6*P *A  + 2*P *K  - 4*P*A
        3       3

                2    4      2  2    4
       - 4*P*A*K  + A  + 2*A *K  + K ))


% Use of delta function and derivatives.

laplace(-1/2*delta(x), x, p);


    1
 - ---
    2
 laplace(delta(x-tau), x, p);


   1
--------
  P*TAU
 E

laplace(c*cos(k*x)*delta(x),x,p);


C

laplace(e**(a*x)*delta(x), x, p);


1

laplace(c*x**2*delta(x), x, p);


0

laplace(-1/4*x**2*delta(x-pi), x, p);


     1    2
  - ---*PI
     4
------------
    P*PI
   E

laplace(cos(2*x-3)*delta(x-pi),x,p);


 COS(2*PI - 3)
---------------
      P*PI
     E

laplace(e**(-b*x)*delta(x-tau), x, p);


       1
----------------
  P*TAU + B*TAU
 E

on lmon;


laplace(cos(2*x)*delta(x),x,p);


1

laplace(c*x**2*delta(x), x, p);


0

laplace(c*x**2*delta(x-pi), x, p);


     2
 C*PI
-------
  P*PI
 E

laplace(cos(a*x-b)*delta(x-pi),x,p);


 COS(A*PI - B)
---------------
      P*PI
     E

laplace(e**(-b*x)*delta(x-tau), x, p);


       1
----------------
  P*TAU + B*TAU
 E

off lmon;



laplace(2/3*df(delta x,x),x,p);


 2
---*P
 3

off exp;

 laplace(e**(a*x)*df(delta x,x,5), x, p);


          5
 - (A - P)
 on exp;


laplace(df(delta(x-a),x), x, p);


  P
------
  P*A
 E

laplace(e**(k*x)*df(delta(x),x), x, p);


P - K

laplace(e**(k*x)*c*df(delta(x-tau),x,2), x, p);


  K*TAU     2            2
 E     *C*(P  - 2*P*K + K )
----------------------------
            P*TAU
           E

on lmon;

laplace(e**(k*x)*sin(a*x)*df(delta(x-t),x,2),x,p);


  K*T   1   2*A*I*T  2    1   2    2*A*I*T          2*A*I*T
(E   *(---*E       *P  - ---*P  - E       *P*A*I - E       *P*K
        2                 2

                         1   2*A*I*T  2    2*A*I*T
        - P*A*I + P*K - ---*E       *A  + E       *A*I*K
                         2

           1   2*A*I*T  2    1   2            1   2     P*T + A*I*T
        + ---*E       *K  + ---*A  + A*I*K - ---*K ))/(E           *I
           2                 2                2

   )
off lmon;



% But if tau is positive, Laplace transform is not defined.

laplace(e**(a*x)*delta(x+tau), x, p);


*** Laplace for DELTA(X + TAU) not known - try ON LMON 

         A*X
LAPLACE(E   *DELTA(X + TAU),X,P)

laplace(2*c*df(delta(x+tau),x), x, p);


*** Laplace for DF(DELTA(X + TAU),X) not known - try ON LMON 

LAPLACE(2*DF(DELTA(X + TAU),X)*C,X,P)

laplace(e**(k*x)*df(delta(x+tau),x,3), x, p);


*** Laplace for DF(DELTA(X + TAU),X,3) not known - try ON LMON 

         K*X
LAPLACE(E   *DF(DELTA(X + TAU),X,3),X,P)


% Adding new let rules for Laplace operator. Note the syntax.

for all x let laplace(log(x),x) = -log(gam*il!&)/il!&;


laplace(-log(x)*a/4, x, p);


*** Laplace for LOG(X) not known - try ON LMON 

            1
LAPLACE( - ---*LOG(X)*A,X,P)
            4
 laplace(-log(x),x,p);


*** Laplace for LOG(X) not known - try ON LMON 

LAPLACE( - LOG(X),X,P)

laplace(a*log(x)*e**(k*x), x, p);


*** Laplace for LOG(X) not known - try ON LMON 

         K*X
LAPLACE(E   *LOG(X)*A,X,P)

for all x clear laplace(log(x),x);



operator f;

 for all x let
    laplace(df(f(x),x),x) = il!&*laplace(f(x),x) - sub(x=0,f(x));


for all x,n such that numberp n and fixp n let
    laplace(df(f(x),x,n),x) = il!&**n*laplace(f(x),x) -
      for i:=n-1 step -1 until 0 sum
        sub(x=0, df(f(x),x,n-1-i)) * il!&**i ;


for all x let laplace(f(x),x) = f(il!&);



laplace(1/2*a*df(-2/3*f(x)*c,x), x,p);


*** Laplace for DF(F(X),X) not known - try ON LMON 

            1
LAPLACE( - ---*DF(F(X),X)*A*C,X,P)
            3

laplace(1/2*a*df(-2/3*f(x)*c,x,4), x,p);


*** Laplace for DF(F(X),X,4) not known - try ON LMON 

            1
LAPLACE( - ---*DF(F(X),X,4)*A*C,X,P)
            3

laplace(1/2*a*e**(k*x)*df(-2/3*f(x)*c,x,2), x,p);


*** Laplace for DF(F(X),X,2) not known - try ON LMON 

             K*X
          - E   *DF(F(X),X,2)*A*C
LAPLACE(--------------------------,X,P)
                    3

clear f;



% Or if the boundary conditions are known and assume that
% f(i,0)=sub(x=0,df(f(x),x,i)) the above may be overwritten as:
operator f;

 for all x let
    laplace(df(f(x),x),x) = il!&*laplace(f(x),x) - f(0,0);


for all x,n such that numberp n and fixp n let
    laplace(df(f(x),x,n),x) = il!&**n*laplace(f(x),x) -
      for i:=n-1 step -1 until 0 sum il!&**i * f(n-1-i,0);


for all x let laplace(f(x),x) = f(il!&);


let f(0,0)=0, f(1,0)=1, f(2,0)=2, f(3,0)=3;


laplace(1/2*a*df(-2/3*f(x)*c,x), x,p);


*** Laplace for DF(F(X),X) not known - try ON LMON 

            1
LAPLACE( - ---*DF(F(X),X)*A*C,X,P)
            3

laplace(1/2*a*df(-2/3*f(x)*c,x,4), x,p);


*** Laplace for DF(F(X),X,4) not known - try ON LMON 

            1
LAPLACE( - ---*DF(F(X),X,4)*A*C,X,P)
            3

clear f(0,0), f(1,0), f(2,0), f(3,0);

 clear f;



% Very complicated examples.

on lmon;


laplace(sin(a*x-b)**2, x, p);


     (P*B)/A  2    (P*B)/A  2      (P*B)/A  2
  - E       *P  + E       *P  + 4*E       *A
----------------------------------------------
             (2*P*B)/A     2      2
          2*E         *P*(P  + 4*A )

off mcd;

 laplace(x**3*(sin x)**4*e**(5*k*x)*c/2, x,p);


                       -4                       -4
C*(3/16*(4*I + 5*K - P)   + 3/16*(4*I - 5*K + P)

                         -4                      -4                -4
    - 3/4*(2*I + 5*K - P)   - 3/4*(2*I - 5*K + P)   + 9/8*(5*K - P)

   )

a:=(sin x)**4*e**(5*k*x)*c/2;


          5*K*X       4
A := 1/2*E     *SIN(X) *C
 laplace(x**3*a,x,p);


                       -4                       -4
C*(3/16*(4*I + 5*K - P)   + 3/16*(4*I - 5*K + P)

                         -4                      -4                -4
    - 3/4*(2*I + 5*K - P)   - 3/4*(2*I - 5*K + P)   + 9/8*(5*K - P)

   )
 clear a;

 on mcd;


% And so on, but is very time consuming.
% laplace(e**(k*x)*x**2*sin(a*x-b)**2, x, p);
% for all x let one(a*x-b)*one(c*x-d) = one(c*x-d);
% laplace(x*e**(-2*x)*cos(a*x-b)*sinh(c*x-d), x, p);
% for all x clear one(a*x-b)*one(c*x-d) ;
% laplace(x*e**(c*x)*sin(k*x)**3*cosh(x)**2*cos(a*x), x, p);
off lmon;



% Error messages.

laplace(sin(-x),x,p);


***** Laplace induces ONE( - X)  which is not allowed 

LAPLACE(SIN( - X),X,P)

on lmon;

 laplace(sin(-a*x), x, p);


***** Laplace induces ONE( - X*A)  which is not allowed 

LAPLACE(SIN( - A*X),X,P)
 off lmon;


laplace(e**(k*x**2), x, p);


*** Laplace for E**(X**2*K) not known - try ON LMON 

            2
         K*X
LAPLACE(E    ,X,P)

laplace(sin(-a*x+b)*cos(c*x+d), x, p);


*** Laplace for  - SIN(X*A - B)*COS(X*C + D) not known - try ON LMON 

LAPLACE( - SIN(A*X - B)*COS(C*X + D),X,P)

laplace(x**(-5/2),x,p);


*** Laplace for X**( - 5/2) not known - try ON LMON 

          - 5/2
LAPLACE(X      ,X,P)

% With int arg, can't be shifted.
laplace(intl(y*e**(a*y)*sin(k*y-tau),y,0,x), x, p);


*** Laplace for SIN(X*K - TAU) not allowed 

 -1          A*X
P  *LAPLACE(E   *SIN(K*X - TAU)*X,X,P)

laplace(cosh(x**2), x, p);


*** Laplace for COSH(X**2) not known - try ON LMON 

              2
LAPLACE(COSH(X ),X,P)

laplace(3*x/(x**2-5*x+6),x,p);


*** Laplace for (X**2 - 5*X + 6)**(-1) not known - try ON LMON 

            2           -1
LAPLACE(3*(X  - 5*X + 6)  *X,X,P)

laplace(1/sin(x),x,p);


*** Laplace for SIN(X)**(-1) not known - try ON LMON 

              -1
LAPLACE(SIN(X)  ,X,P)
   % But ...
laplace(x/sin(-3*a**2),x,p);


    -2        2 -1
 - P  *SIN(3*A )

% Severe errors.
% laplace(sin x,x,cos y);
% laplace(sin x,x,y+1);
% laplace(sin(x+1),x+1,p);


Comment  Examples of Inverse Laplace transformations;


symbolic(ordl!* := nil);

   % To nullify previous order declarations.

order t;



% Elementary ratio of polynomials.

invlap(1/p, p, t);


*** Invlap for P**(-1) not known 

        -1
INVLAP(P  ,P,T)

invlap(1/p**3, p, t);


*** Invlap for P**(-3) not known 

        -3
INVLAP(P  ,P,T)

invlap(1/(p-a), p, t);


 T*A
E
 invlap(1/(2*p-a),p,t);


     1/2*T*A
1/2*E
 invlap(1/(p/2-a),p,t);


   2*T*A
2*E

invlap(e**(-k*p)/(p-a), p, t);


 T*A - A*K
E
 invlap(b**(-k*p)/(p-a), p, t);


 T*A - LOG(B)*A*K
E

invlap(1/(p-a)**3, p, t);


     T*A  2
1/2*E   *T

invlap(1/(c*p-a)**3, p, t);


          -1
     T*A*C    2  -3
1/2*E       *T *C
 invlap(1/(p/c-a)**3, p, t);


     T*A*C  2  3
1/2*E     *T *C

invlap((c*p-a)**(-1)/(c*p-a)**2, p, t);


          -1
     T*A*C    2  -3
1/2*E       *T *C

invlap(c/((p/c-a)**2*(p-a*c)), p, t);


     T*A*C  2  3
1/2*E     *T *C

invlap(1/(p*(p-a)), p, t);


*** Invlap for P**(-1)*(P - A)**(-1) not known 

                 -1  -1
INVLAP( - (A - P)  *P  ,P,T)

invlap(c/((p-a)*(p-b)), p, t);


       -1     T*A    T*B
(A - B)  *C*(E    - E   )

invlap(p/((p-a)*(p-b)), p, t);


*** Invlap for P*(P - A)**(-1)*(P - B)**(-1) not known 

              -1        -1
INVLAP((A - P)  *(B - P)  *P,P,T)

off mcd;

 invlap((p+d)/(p*(p-a)), p, t);


*** Invlap for P**(-1)*(P - A)**(-1)*(P + D) not known 

                 -1    -1          -1
INVLAP( - (A - P)  *D*P   - (A - P)  ,P,T)

invlap((p+d)/((p-a)*(p-b)), p, t);


       -1   T*A      T*A      T*B      T*B
(A - B)  *(E   *A + E   *D - E   *B - E   *D)

invlap(1/(e**(k*p)*p*(p+1)), p, t);


*** Invlap for E**( - P*K)*P**(-1)*(P + 1)**(-1) not known 

         - K*P        -1  -1
INVLAP(E      *(P + 1)  *P  ,P,T)
 on mcd;


off exp;

 invlap(c/(p*(p+a)**2), p, t);


*** Invlap for P**(-1)*(P + A)**(-2)*C not known 

            C
INVLAP(------------,P,T)
               2
        (A + P) *P
 on exp;


invlap(1, p, t);


DELTA(T)
 invlap(c1*p/c2, p, t);


*** Invlap for P*C1*C2**(-1) not known 

              -1
INVLAP(P*C1*C2  ,P,T)

invlap(p/(p-a), p, t);


*** Invlap for P*(P - A)**(-1) not known 

                 -1
INVLAP( - (A - P)  *P,P,T)
 invlap(c*p**2, p, t);


*** Invlap for P**2*C not known 

          2
INVLAP(C*P ,P,T)

invlap(p**2*e**(-a*p)*c, p, t);


*** Invlap for E**( - P*A)*P**2*C not known 

         - A*P    2
INVLAP(E      *C*P ,P,T)

off mcd;

invlap(e**(-a*p)*(1/p**2-p/(p-1))+c/p, p, t);


*** Invlap for P**(-1)*C not known 

*** Invlap for  - E**( - P*A)*P**(-2)*(P**3*(P - 1)**(-1) - 1) not known 

            - A*P        -1       - A*P  -2                  -1
INVLAP( - E      *(P - 1)  *P + E      *P  ,P,T) + INVLAP(C*P  ,P,T)
on mcd;


invlap(a*p**2-2*p+1, p, x);


*** Invlap for P**2*A not known 

*** Invlap for P not known 

                               2
INVLAP( - 2*P,P,X) + INVLAP(A*P ,P,X) + DELTA(X)


% P to non-integer power in denominator - i.e. gamma-function case.

invlap(1/sqrt(p), p, t);


        1
------------------
 SQRT(PI)*SQRT(T)
 invlap(1/sqrt(p-a), p, t);


        T*A
       E
------------------
 SQRT(PI)*SQRT(T)

invlap(c/(p*sqrt(p)), p, t);


*** Invlap for P**( - 1/2)*P**(-1)*C not known 

         - 1/2    -1
INVLAP(P      *C*P  ,P,T)
 invlap(c*sqrt(p)/p**2, p, t);


*** Invlap for SQRT(P)*P**(-2)*C not known 

                  -2
INVLAP(SQRT(P)*C*P  ,P,T)

invlap((p-a)**(-3/2), p, t);


            T*A
 2*SQRT(T)*E
----------------
    SQRT(PI)

invlap(sqrt(p-a)*c/(p-a)**2, p, t);


            T*A
 2*SQRT(T)*E   *C
------------------
     SQRT(PI)

invlap(1/((p-a)*b*sqrt(p-a)), p, t);


            T*A
 2*SQRT(T)*E
----------------
   SQRT(PI)*B

invlap((p/(c1-3)-a)**(-3/2), p, t);


            T*A*C1
 2*SQRT(T)*E      *SQRT(C1 - 3)*(C1 - 3)
-----------------------------------------
                       3*T*A
             SQRT(PI)*E

invlap(1/((p/(c1-3)-a)*b*sqrt(p/(c1-3)-a)), p, t);


            T*A*C1
 2*SQRT(T)*E      *SQRT(C1 - 3)*(C1 - 3)
-----------------------------------------
                      3*T*A
            SQRT(PI)*E     *B

invlap((p*2-a)**(-3/2), p, t);


          (T*A)/2
 SQRT(T)*E
------------------
 SQRT(PI)*SQRT(2)

invlap(sqrt(2*p-a)*c/(p*2-a)**2, p, t);


  1           (T*A)/2
 ---*SQRT(T)*E       *SQRT(2)*C
  2
--------------------------------
            SQRT(PI)

invlap(c/p**(7/2), p, t);


  8            2
 ----*SQRT(T)*T *C
  15
-------------------
     SQRT(PI)
 invlap(p**(-7/3), p, t);


    1/3
   T   *T
------------
        7
 GAMMA(---)
        3

invlap(gamma(b)/p**b,p,t);


  B
 T
----
 T
 invlap(c*gamma(b)*(p-a)**(-b),p,t);


  B  T*A
 T *E   *C
-----------
     T

invlap(e**(-k*p)/sqrt(p-a), p, t);


                   1
---------------------------------------
            - T*A + A*K
 SQRT(PI)*E            *SQRT( - K + T)


% Images that give elementary object functions.
% Use of new switches lmon, lhyp.

invlap(k/(p**2+k**2), p, t);


  1   2*T*I*K    1
 ---*E        - ---
  2              2
--------------------
       T*I*K
      E     *I

% This is made more readable by :
on ltrig;

 invlap(k/(p**2+k**2), p, t);


SIN(K*T)

invlap(p/(p**2+1), p, t);


*** Invlap for P*(P**2 + 1)**(-1) not known 

          P
INVLAP(--------,P,T)
         2
        P  + 1

invlap((p**2-a**2)/(p**2+a**2)**2, p, t);


T*COS(A*T)

invlap(p/(p**2+a**2)**2, p, t);


*** Invlap for P*(P**2 + A**2)**(-2) not known 

                P
INVLAP(-------------------,P,T)
         4      2  2    4
        A  + 2*A *P  + P

invlap((p-a)/((p-a)**2+b**2), p, t);


 T*A
E   *COS(B*T)
 off ltrig;


on lhyp;

 invlap(s/(s**2-k**2), s, t);


*** Invlap for S*(S**2 - K**2)**(-1) not known 

          - S
INVLAP(---------,S,T)
         2    2
        K  - S

invlap(e**(-tau/k*p)*p/(p**2-k**2), p, t);


*** Invlap for E**( - P*K**(-1)*TAU)*P*(P**2 - K**2)**(-1) not known 

                     - P
INVLAP(-------------------------------,P,T)
         (P*TAU)/K  2    (P*TAU)/K  2
        E         *K  - E         *P
 off lhyp;


% But it is not always possible to convert expt. functions, e.g.:
on lhyp;

 invlap(k/((p-a)**2-k**2), p, t);


SINH(K*T)*(COSH(A*T) + SINH(A*T))
 off lhyp;


on ltrig;

 invlap(e**(-tau/k*p)*k/(p**2+k**2), p, t);


  1   2*T*I*K    1   2*I*TAU
 ---*E        - ---*E
  2              2
-----------------------------
       T*I*K + I*TAU
      E             *I
 off ltrig;


% In such situations use the default switches:
invlap(k/((p-a)**2-k**2), p, t);


  T*A   1   2*T*K    1
 E   *(---*E      - ---)
        2            2
-------------------------
           T*K
          E
 % i.e. e**(a*t)*cosh(k*t).
invlap(e**(-tau/k*p)*k/(p**2+k**2), p, t);


  1   2*T*I*K    1   2*I*TAU
 ---*E        - ---*E
  2              2
-----------------------------
       T*I*K + I*TAU
      E             *I
 % i.e. sin(k*t-tau).

% More complicated examples.

off exp,mcd;

 invlap((p+d)/(p**2*(p-a)), p, t);


*** Invlap for P**(-2)*(P - A)**(-1)*(P + D) not known 

                 -1          -2
INVLAP( - (A - P)  *(D + P)*P  ,P,T)

invlap(e**(-tau/k*p)*c/(p*(p-a)**2), p, t);


*** Invlap for E**( - P*K**(-1)*TAU)*P**(-1)*(P - A)**(-2)*C not known 

            -1
         - K  *P*TAU        -2    -1
INVLAP(E            *(A - P)  *C*P  ,P,T)

invlap(1/((p-a)*(p-b)*(p-c)), p, t);


 T*A   2                   -1    T*B               2       -1
E   *(A  - A*B - A*C + B*C)   - E   *(A*B - A*C - B  + B*C)

    T*C                     2 -1
 + E   *(A*B - A*C - B*C + C )

invlap((p**2+g*p+d)/(p*(p-a)**2), p, t);


*** Invlap for P**(-1)*(P**2 + P*G + D)*(P - A)**(-2) not known 

              -2             2   -1
INVLAP((A - P)  *(D + G*P + P )*P  ,P,T)
 on exp,mcd;


invlap(k*c**(-b*p)/((p-a)**2+k**2), p, t);


            1   2*B*I*K    1   2*T*I*K
         - ---*C        + ---*E
            2              2
-----------------------------------------------
   - T*A + T*I*K + LOG(C)*A*B + LOG(C)*B*I*K
 E                                          *I

on ltrig;

 invlap(c/(p**2*(p**2+a**2)), p, t);


*** Invlap for P**(-2)*(P**2 + A**2)**(-1)*C not known 

            C
INVLAP(------------,P,T)
         2  2    4
        A *P  + P

invlap(1/(p**2-p+1), p, t);


    T/2      1
 2*E   *SIN(---*SQRT(3)*T)
             2
---------------------------
          SQRT(3)
 invlap(1/(p**2-p+1)**2, p, t);


    T/2              1                              1
 2*E   *( - 3*T*COS(---*SQRT(3)*T) + 2*SQRT(3)*SIN(---*SQRT(3)*T))
                     2                              2
-------------------------------------------------------------------
                                 9

invlap(2*a**2/(p*(p**2+4*a**2)), p, t);


*** Invlap for 2*P**(-1)*(P**2 + 4*A**2)**(-1)*A**2 not known 

              2
           2*A
INVLAP(-------------,P,T)
           2      3
        4*A *P + P

% This is (sin(a*t))**2 and you can get this by using the let rules :
for all x let sin(2*x)=2*sin x*cos x, cos(2*x)=(cos x)**2-(sin x)**2,
(cos x)**2 =1-(sin x)**2;


invlap(2*a**2/(p*(p**2+4*a**2)), p, t);


*** Invlap for 2*P**(-1)*(P**2 + 4*A**2)**(-1)*A**2 not known 

              2
           2*A
INVLAP(-------------,P,T)
           2      3
        4*A *P + P

for all x clear sin(2*x),cos(2*x),cos(x)**2;

  off ltrig;


on lhyp;

invlap((p**2-2*a**2)/(p*(p**2-4*a**2)),p,t);


*** Invlap for P**(-1)*(P**2 - 2*A**2)*(P**2 - 4*A**2)**(-1) not known 

            2    2
         2*A  - P
INVLAP(-------------,P,T)
           2      3
        4*A *P - P

off lhyp;

 % Analogously, the above is (cosh(a*t))**2.

% Floating arithmetic.

invlap(2.55/((0.5*p-2.0)*(p-3.3333)), p, t);


    51000   (33333*T)/10000    51000   4*T
 - -------*E                + -------*E
    6667                       6667

on rounded;


invlap(2.55/((0.5*p-2.0)*(p-3.3333)), p, t);


               4.0*T                  3.3333*T
7.64961751912*E      - 7.64961751912*E

invlap(1.5/sqrt(p-0.5), p, t);


        0.5*T
   1.5*E
-----------------
  0.5
 T   *GAMMA(0.5)

invlap(2.75*p**2-0.5*p+e**(-0.9*p)/p, p, t);


*** Invlap for P**2 not known 

*** Invlap for P not known 

*** Invlap for E**( - 0.9*P)*P**(-1) not known 

                                - 0.9*P  -1
INVLAP( - 0.5*P,P,T) + INVLAP(E        *P  ,P,T)

                2
 + INVLAP(2.75*P ,P,T)

invlap(1/(2.0*p-3.0)**3, p, t);


        1.5*T  2
0.0625*E     *T
 invlap(1/(2.0*p-3.0)**(3/2), p, t);


                 0.5  1.5*T
 0.353553390593*T   *E
----------------------------
         GAMMA(1.5)

invlap(1/(p**2-5.0*p+6), p, t);


 3.0*T    2.0*T
E      - E

off rounded;



% Adding new let rules for the invlap operator. note the syntax:

for all x let invlap(log(gam*x)/x,x) = -log(lp!&);


invlap(-1/2*log(gam*p)/p, p, t);


*** Invlap for  - 1/2*P**(-1)*LOG(P*GAM) not known 

           1              -1
INVLAP( - ---*LOG(P*GAM)*P  ,P,T)
           2

invlap(-e**(-a*p)*log(gam*p)/(c*p), p, t);


*** Invlap for  - E**( - P*A)*P**(-1)*LOG(P*GAM)*C**(-1) not known 

            - A*P             -1  -1
INVLAP( - E      *LOG(P*GAM)*C  *P  ,P,T)

for all x clear invlap(1/x*log(gam*x),x);



% Very complicated examples and use of factorizer.

off exp,mcd;

 invlap(c**(-k*p)*(p**2+g*p+d)/(p**2*(p-a)**3), p, t);


*** Invlap for C**( - P*K)*P**(-2)*(P**2 + P*G + D)*(P - A)**(-3) not known 

            - K*P        -3             2   -2
INVLAP( - C      *(A - P)  *(D + G*P + P )*P  ,P,T)

on exp,mcd;


invlap(1/(2*p**3-5*p**2+4*p-1), p, t);


 T        T/2      T
E *T + 2*E    - 2*E

on ltrig,lhyp;

 invlap(1/(p**4-a**4), p, t);


  - SIN(A*T) + SINH(A*T)
-------------------------
             3
          2*A

invlap(1/((b-3)*p**4-a**4*(2+b-5)), p, t);


  - SIN(A*T) + SINH(A*T)
-------------------------
         3
      2*A *(B - 3)
 off ltrig,lhyp;


% The next three examples are the same:
invlap(c/(p**3/8-9*p**2/4+27/2*p-27)**2,p,t);


*** Invlap for (1/8*P**3 - 9/4*P**2 + 27/2*P - 27)**(-2)*C not known 

         1   3    9   2    27         -2
INVLAP((---*P  - ---*P  + ----*P - 27)  *C,P,T)
         8        4        2
invlap(c/(p/2-3)**6,p,t);


 8    6*T  5
----*E   *T *C
 15

off exp;

 a:=(p/2-3)**6;


             6
      (P - 6)
A := ----------
         64
 on exp;

 invlap(c/a, p, t);


 8    6*T  5
----*E   *T *C
 15
 clear a;


% The following two examples are the same :
invlap(c/(p**4+2*p**2+1)**2, p, t);


*** Invlap for (P**4 + 2*P**2 + 1)**(-2)*C not known 

         4      2     -2
INVLAP((P  + 2*P  + 1)  *C,P,T)
 invlap(c/((p-i)**4*(p+i)**4),p,t);


     1    2*T*I  3      1    3      1    2*T*I  2    1    2
(C*(----*E     *T *I + ----*T *I - ----*E     *T  + ----*T
     96                 96          16               16

        5    2*T*I        5          5    2*T*I    5       T*I
     - ----*E     *T*I - ----*T*I + ----*E      - ----))/(E   *I)
        32                32         32            32

% The following three examples are the same :
invlap(e**(-k*p)/(2*p-3)**6, p, t);


  (3*T)/2   1   5    4        3  2      2  3      4    1   5
 E       *(---*T  - T *K + 2*T *K  - 2*T *K  + T*K  - ---*K )
            5                                          5
--------------------------------------------------------------
                              (3*K)/2
                        1536*E

invlap(e**(-k*p)/(4*p**2-12*p+9)**3, p, t);


  (3*T)/2   1   5    4        3  2      2  3      4    1   5
 E       *(---*T  - T *K + 2*T *K  - 2*T *K  + T*K  - ---*K )
            5                                          5
--------------------------------------------------------------
                              (3*K)/2
                        1536*E

invlap(e**(-k*p)/(8*p**3-36*p**2+54*p-27)**2, p, t);


*** Invlap for E**( - P*K)*(8*P**3 - 36*P**2 + 54*P - 27)**(-2) not known 

         - K*P     3       2             -2
INVLAP(E      *(8*P  - 36*P  + 54*P - 27)  ,P,T)


% Error messages.

invlap(e**(a*p)/p, p, t);


*** Invlap for E**(P*A)*P**(-1) not known 

        A*P  -1
INVLAP(E   *P  ,P,T)

invlap(c*p*sqrt(p), p, t);


*** Invlap for SQRT(P)*P*C not known 

INVLAP(SQRT(P)*C*P,P,T)

invlap(sin(p), p, t);


*** Invlap for SIN(P) not known 

INVLAP(SIN(P),P,T)

invlap(1/(a*p**3+b*p**2+c*p+d),p,t);


*** Invlap for (P**3*A + P**2*B + P*C + D)**(-1) not known 

           3      2           -1
INVLAP((A*P  + B*P  + C*P + D)  ,P,T)

invlap(1/(p**2-p*sin(p)+a**2),p,t);


*** Invlap for (P**2 - P*SIN(P) + A**2)**(-1) not known 

                       2    2 -1
INVLAP( - (SIN(P)*P - A  - P )  ,P,T)

on rounded;

 invlap(1/(p**3-1), p, t);


*** Invlap for (P**3 - 1)**(-1) not known 

         3     -1
INVLAP((P  - 1)  ,P,T)
 off rounded;


% Severe errors:
%invlap(1/(p**2+1), p+1, sin(t) );
%invlap(p/(p+1)**2, sin(p), t);

end;


Time: 12036 ms  plus GC time: 391 ms

Quitting


REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]