module greduo;
% Compute 'greduce' with several orders for the minimal polynomial.
global'(gorder gorders greduce_result);
share gorder;
share gorders;
share greduce_result;
if null gorders then gorders:='(list revgradlex gradlex lex);
symbolic procedure greduce!-orders!-eval u;
% 'Greduce_orders(p,g)'; the result is the (minimal) reduction of 'p'
% corresponding to the global variable '*orders', eventually '0'.
begin scalar b,g,l,o,p,r,rr,s,ss,v,x;
l:=length u;
if 2>l or 3<l then
rederr('groe4,1,"groe4 must have 2 or 3 parameters.");
p:=reval car u;u:=cdr u;
if eqexpr p then p:=!*eqn2a p;
g:=reval car u;u:=cdr u;
if not eqcar(g,'list) then
rederr('groe4,2,"groe4: 2nd parameter must be a list.");
for each gg in cdr g do
if null x and eqexpr gg then x:=t;
if x then
g:='list.for each gg in cdr g collect
if eqexpr gg then !*eqn2a gg else gg;
if u then<<v:=reval car u;
if not eqcar(v,'list) then
rederr('groe4,3,"groe4: 3rd par. must be a list (or it must be omitted).")>>;
v:='list.groebnervars(cdr g,v);
for each oo in cdr gorders do
if null b then
<<o:=oo;oo:=if eqcar(oo,'list)then cdr oo else oo.nil;torder(v.oo);
rr:=greduceeval{p,g};ss:=greduce!-orders!-size rr;
if null r or ss<s then <<gorder:=o;r:=rr;s:=ss;greduce_result:=rr>>;
if rr=0 then b:=t>>;return r end;
put('greduce_orders,'psopfn,'greduce!-orders!-eval);
symbolic procedure greduce!-orders!-size p;
% Compute the size of the polynomial 'p'.
if atom p then 1 else
if eqcar(p,'expt)then(1+greduce!-orders!-size cadr p+2*x
where x=if fixp caddr p and caddr p>1 and caddr p<30 then caddr p
else 5*greduce!-orders!-size caddr p)else
for each x in p sum greduce!-orders!-size x;
endmodule;;end;