@@ -1,498 +1,498 @@ -REDUCE 3.6, 15-Jul-95, patched to 6 Mar 96 ... - - - %Appendix (Testfile). - - %This appendix is a test file. The symmetry groups for various - %equations or systems of equations are determined. The variable - %PCLASS has the default value 0 and may be changed by the user - %before running it. The output may be compared with the results - %which are given in the references. - - %The Burgers equations - - deq 1:=u(1,1)+u 1*u(1,2)+u(1,2,2)$ - - - - cresys deq 1$ - - simpsys()$ - - result()$ - - -The differential equation - -DEQ(1):=u(1,2,2) + u(1,2)*u(1) + u(1,1) - -The symmetry generators are - -GEN(1):=dx(1) - -GEN(2):=dx(2) - -GEN(3):=dx(2)*x(1) + du(1) - - 2 -GEN(4):=dx(1)*x(1) + dx(2)*x(2)*x(1) + du(1)*( - u(1)*x(1) + x(2)) - -GEN(5):=2*dx(1)*x(1) + dx(2)*x(2) - du(1)*u(1) - -The non-vanishing commutators of the finite subgroup - -COMM(1,3):= dx(2) - -COMM(1,4):= 2*dx(1)*x(1) + dx(2)*x(2) - du(1)*u(1) - -COMM(1,5):= 2*dx(1) - -COMM(2,4):= dx(2)*x(1) + du(1) - -COMM(2,5):= dx(2) - -COMM(3,5):= - dx(2)*x(1) - du(1) - - 2 -COMM(4,5):= - 2*dx(1)*x(1) - - - 2*dx(2)*x(2)*x(1) - - + 2*du(1)*(u(1)*x(1) - x(2)) - - - %The Kadomtsev-Petviashvili equation - - deq 1:=3*u(1,3,3)+u(1,2,2,2,2)+6*u(1,2,2)*u 1 - - +6*u(1,2)**2+4*u(1,1,2)$ - - - - cresys deq 1$ - - simpsys()$ - - result()$ - - -The differential equation - -DEQ(1):=3*u(1,3,3) - - +u(1,2,2,2,2) - - +6*u(1,2,2)*u(1) - - 2 - +6*u(1,2) - - +4*u(1,1,2) - -The symmetry generators are - -GEN(1):=3*dx(2)*c(12) + 2*du(1)*df(c(12),x(1)) - -GEN(2):= 6*dx(2)*df(c(9),x(1))*x(3) - - - 9*dx(3)*c(9) - - + 4*du(1)*df(c(9),x(1),2)*x(3) - -GEN(3):= 27*dx(1)*xi(1) - - 2 - 3*dx(2)*( - 2*df(xi(1),x(1),2)*x(3) + 3*df(xi(1),x(1))*x(2)) - - + 18*dx(3)*df(xi(1),x(1))*x(3) - - 2*du(1)*( - - 2 - -2*df(xi(1),x(1),3)*x(3) - - +3*df(xi(1),x(1),2)*x(2) - - -9*df(xi(1),x(1))*u(1)) - -The remaining dependencies - -xi(1) depends on x(1) - -c(12) depends on x(1) - -c(9) depends on x(1) - - - - - %The modified Kadomtsev-Petviashvili equation - - deq 1:=u(1,1,2)-u(1,2,2,2,2)-3*u(1,3,3) - - +6*u(1,2)**2*u(1,2,2)+6*u(1,3)*u(1,2,2)$ - - - - cresys deq 1$ - - simpsys()$ - - result()$ - - -The differential equation - -DEQ(1):= - - -3*u(1,3,3) - - +6*u(1,3)*u(1,2,2) - - -u(1,2,2,2,2) - - 2 - +6*u(1,2,2)*u(1,2) - - +u(1,1,2) - -The symmetry generators are - -GEN(1):=du(1)*c(16) - -GEN(2):=6*dx(2)*c(14) + du(1)*df(c(14),x(1))*x(3) - -GEN(3):= 12*dx(2)*df(c(11),x(1))*x(3) - - + 72*dx(3)*c(11) - - 2 - + du(1)*(df(c(11),x(1),2)*x(3) + 6*df(c(11),x(1))*x(2)) - -GEN(4):= 324*dx(1)*xi(1) - - 2 - + 18*dx(2)*(df(xi(1),x(1),2)*x(3) + 6*df(xi(1),x(1))*x(2)) - - + 216*dx(3)*df(xi(1),x(1))*x(3) - - 2 - + du(1)*x(3)*(df(xi(1),x(1),3)*x(3) + 18*df(xi(1),x(1),2)*x(2)) - -The remaining dependencies - -xi(1) depends on x(1) - -c(16) depends on x(1) - -c(14) depends on x(1) - -c(11) depends on x(1) - - - - - %The real- and the imaginary part of the nonlinear Schroedinger - %equation - - deq 1:= u(1,1)+u(2,2,2)+2*u 1**2*u 2+2*u 2**3$ - - - - deq 2:=-u(2,1)+u(1,2,2)+2*u 1*u 2**2+2*u 1**3$ - - - - %Because this is not a single equation the two assignments - - sder 1:=u(2,2,2)$ - - sder 2:=u(1,2,2)$ - - - - %are necessary. - - cresys()$ - - simpsys()$ - - result()$ - - -The differential equations - -DEQ(1):=u(2,2,2) - - 3 - +2*u(2) - - 2 - +2*u(2)*u(1) - - +u(1,1) - -DEQ(2):= - - -u(2,1) - - 2 - +2*u(2) *u(1) - - +u(1,2,2) - - 3 - +2*u(1) - -The symmetry generators are - -GEN(1):=dx(1) - -GEN(2):=dx(2) - -GEN(3):=du(1)*u(2) + du(2)*u(1) - -GEN(4):=2*dx(2)*x(1) - du(1)*u(2)*x(2) - du(2)*u(1)*x(2) - -GEN(5):=2*dx(1)*x(1) + dx(2)*x(2) - du(1)*u(1) + du(2)*u(2) - -The non-vanishing commutators of the finite subgroup - -COMM(1,4):= 2*dx(2) - -COMM(1,5):= 2*dx(1) - -COMM(2,4):= - du(1)*u(2) - du(2)*u(1) - -COMM(2,5):= dx(2) - -COMM(3,5):= - 2*du(1)*u(2) + 2*du(2)*u(1) - -COMM(4,5):= - 2*dx(2)*x(1) + 3*du(1)*u(2)*x(2) - du(2)*u(1)*x(2) - - - %The symmetries of the system comprising the four equations - - deq 1:=u(1,1)+u 1*u(1,2)+u(1,2,2)$ - - - - deq 2:=u(2,1)+u(2,2,2)$ - - - - deq 3:=u 1*u 2-2*u(2,2)$ - - - - deq 4:=4*u(2,1)+u 2*(u 1**2+2*u(1,2))$ - - - - sder 1:=u(1,2,2)$ - - sder 2:=u(2,2,2)$ - - sder 3:=u(2,2)$ - - sder 4:=u(2,1)$ - - - - %is obtained by calling - - cresys()$ - - simpsys()$ - -Determining system is not completely solved - - -The remaining equations are - - -GL(1):=df(c(5),x(2),2) + df(c(5),x(1)) - -GL(2):=df(c(5),x(2),x(1)) + df(c(5),x(2),3) - - -The remaining dependencies - -c(5) depends on x(1),x(2) - - -Number of functions is 21 - - df(c 5,x 1):=-df(c 5,x 2,2)$ - - - - df(c 5,x 2,x 1):=-df(c 5,x 2,3)$ - - - - simpsys()$ - - result()$ - - -The differential equations - -DEQ(1):=u(1,2,2) + u(1,2)*u(1) + u(1,1) - -DEQ(2):=u(2,2,2) + u(2,1) - -DEQ(3):= - 2*u(2,2) + u(2)*u(1) - - 2 -DEQ(4):=4*u(2,1) + 2*u(2)*u(1,2) + u(2)*u(1) - -The symmetry generators are - -GEN(1):=dx(1) - -GEN(2):=dx(2) - -GEN(3):=du(2)*u(2) - -GEN(4):=2*dx(2)*x(1) + 2*du(1) + du(2)*u(2)*x(2) - - 2 -GEN(5):= 4*dx(1)*x(1) - - + 4*dx(2)*x(2)*x(1) - - 4*du(1)*( - u(1)*x(1) + x(2)) - - 2 - + du(2)*u(2)*(x(2) - 2*x(1)) - -GEN(6):=4*dx(1)*x(1) + 2*dx(2)*x(2) - 2*du(1)*u(1) - du(2)*u(2) - -GEN(7):=du(1)*(2*df(c(5),x(2)) - c(5)*u(1)) + du(2)*c(5)*u(2) - -The remaining dependencies - -c(5) depends on x(1),x(2) - - - -Constraints - - -df(c(5),x(1)):= - df(c(5),x(2),2) - - - -df(c(5),x(2),x(1)):= - df(c(5),x(2),3) - - - -The non-vanishing commutators of the finite subgroup - -COMM(1,4):= 2*dx(2) - -COMM(1,5):= 8*dx(1)*x(1) + 4*dx(2)*x(2) - 4*du(1)*u(1) - 2*du(2)*u(2) - -COMM(1,6):= 4*dx(1) - -COMM(2,4):= du(2)*u(2) - -COMM(2,5):= 4*dx(2)*x(1) + 4*du(1) + 2*du(2)*u(2)*x(2) - -COMM(2,6):= 2*dx(2) - -COMM(4,6):= - 4*dx(2)*x(1) - 4*du(1) - 2*du(2)*u(2)*x(2) - - 2 -COMM(5,6):= - 16*dx(1)*x(1) - - - 16*dx(2)*x(2)*x(1) - - + 16*du(1)*(u(1)*x(1) - x(2)) - - 2 - 4*du(2)*u(2)*( - x(2) + 2*x(1)) - - - - %The symmetries of the subsystem comprising equation 1 and 3 are - %obtained by - - cresys(deq 1,deq 3)$ - - simpsys()$ - - result()$ - - -The differential equations - -DEQ(1):=u(1,2,2) + u(1,2)*u(1) + u(1,1) - -DEQ(3):= - 2*u(2,2) + u(2)*u(1) - -The symmetry generators are - -GEN(1):=dx(1) - -GEN(2):=dx(2) - -GEN(3):=du(2) - -GEN(4):=2*dx(2)*x(1) + 2*du(1) + du(2)*x(2) - -GEN(5):=2*dx(1)*x(1) + dx(2)*x(2) - du(1)*u(1) - - 2 -GEN(6):= 4*dx(1)*x(1) - - + 4*dx(2)*x(2)*x(1) - - 4*du(1)*( - u(1)*x(1) + x(2)) - - 2 - + du(2)*x(2) - -GEN(7):=du(2)*c(11) - -The remaining dependencies - -c(11) depends on x(1) - - - -The non-vanishing commutators of the finite subgroup - -COMM(1,4):= 2*dx(2) - -COMM(1,5):= 2*dx(1) - -COMM(1,6):= 8*dx(1)*x(1) + 4*dx(2)*x(2) - 4*du(1)*u(1) - -COMM(2,4):= du(2) - -COMM(2,5):= dx(2) - -COMM(2,6):= 4*dx(2)*x(1) + 4*du(1) + 2*du(2)*x(2) - -COMM(4,5):= - 2*dx(2)*x(1) - 2*du(1) - du(2)*x(2) - - 2 -COMM(5,6):= 8*dx(1)*x(1) - - + 8*dx(2)*x(2)*x(1) - - 8*du(1)*( - u(1)*x(1) + x(2)) - - 2 - + 2*du(2)*x(2) - - - %The result for all possible subsystems is discussed in detail in - %''Symmetries and Involution Systems: Some Experiments in Computer - %Algebra'', contribution to the Proceedings of the Oberwolfach - %Meeting on Nonlinear Evolution Equations, Summer 1986, to appear. - -end; -(TIME: spde 19070 19790) +REDUCE 3.6, 15-Jul-95, patched to 6 Mar 96 ... + + + %Appendix (Testfile). + + %This appendix is a test file. The symmetry groups for various + %equations or systems of equations are determined. The variable + %PCLASS has the default value 0 and may be changed by the user + %before running it. The output may be compared with the results + %which are given in the references. + + %The Burgers equations + + deq 1:=u(1,1)+u 1*u(1,2)+u(1,2,2)$ + + + + cresys deq 1$ + + simpsys()$ + + result()$ + + +The differential equation + +DEQ(1):=u(1,2,2) + u(1,2)*u(1) + u(1,1) + +The symmetry generators are + +GEN(1):=dx(1) + +GEN(2):=dx(2) + +GEN(3):=dx(2)*x(1) + du(1) + + 2 +GEN(4):=dx(1)*x(1) + dx(2)*x(2)*x(1) + du(1)*( - u(1)*x(1) + x(2)) + +GEN(5):=2*dx(1)*x(1) + dx(2)*x(2) - du(1)*u(1) + +The non-vanishing commutators of the finite subgroup + +COMM(1,3):= dx(2) + +COMM(1,4):= 2*dx(1)*x(1) + dx(2)*x(2) - du(1)*u(1) + +COMM(1,5):= 2*dx(1) + +COMM(2,4):= dx(2)*x(1) + du(1) + +COMM(2,5):= dx(2) + +COMM(3,5):= - dx(2)*x(1) - du(1) + + 2 +COMM(4,5):= - 2*dx(1)*x(1) + + - 2*dx(2)*x(2)*x(1) + + + 2*du(1)*(u(1)*x(1) - x(2)) + + + %The Kadomtsev-Petviashvili equation + + deq 1:=3*u(1,3,3)+u(1,2,2,2,2)+6*u(1,2,2)*u 1 + + +6*u(1,2)**2+4*u(1,1,2)$ + + + + cresys deq 1$ + + simpsys()$ + + result()$ + + +The differential equation + +DEQ(1):=3*u(1,3,3) + + +u(1,2,2,2,2) + + +6*u(1,2,2)*u(1) + + 2 + +6*u(1,2) + + +4*u(1,1,2) + +The symmetry generators are + +GEN(1):=3*dx(2)*c(12) + 2*du(1)*df(c(12),x(1)) + +GEN(2):= 6*dx(2)*df(c(9),x(1))*x(3) + + - 9*dx(3)*c(9) + + + 4*du(1)*df(c(9),x(1),2)*x(3) + +GEN(3):= 27*dx(1)*xi(1) + + 2 + 3*dx(2)*( - 2*df(xi(1),x(1),2)*x(3) + 3*df(xi(1),x(1))*x(2)) + + + 18*dx(3)*df(xi(1),x(1))*x(3) + + 2*du(1)*( + + 2 + -2*df(xi(1),x(1),3)*x(3) + + +3*df(xi(1),x(1),2)*x(2) + + -9*df(xi(1),x(1))*u(1)) + +The remaining dependencies + +xi(1) depends on x(1) + +c(12) depends on x(1) + +c(9) depends on x(1) + + + + + %The modified Kadomtsev-Petviashvili equation + + deq 1:=u(1,1,2)-u(1,2,2,2,2)-3*u(1,3,3) + + +6*u(1,2)**2*u(1,2,2)+6*u(1,3)*u(1,2,2)$ + + + + cresys deq 1$ + + simpsys()$ + + result()$ + + +The differential equation + +DEQ(1):= + + -3*u(1,3,3) + + +6*u(1,3)*u(1,2,2) + + -u(1,2,2,2,2) + + 2 + +6*u(1,2,2)*u(1,2) + + +u(1,1,2) + +The symmetry generators are + +GEN(1):=du(1)*c(16) + +GEN(2):=6*dx(2)*c(14) + du(1)*df(c(14),x(1))*x(3) + +GEN(3):= 12*dx(2)*df(c(11),x(1))*x(3) + + + 72*dx(3)*c(11) + + 2 + + du(1)*(df(c(11),x(1),2)*x(3) + 6*df(c(11),x(1))*x(2)) + +GEN(4):= 324*dx(1)*xi(1) + + 2 + + 18*dx(2)*(df(xi(1),x(1),2)*x(3) + 6*df(xi(1),x(1))*x(2)) + + + 216*dx(3)*df(xi(1),x(1))*x(3) + + 2 + + du(1)*x(3)*(df(xi(1),x(1),3)*x(3) + 18*df(xi(1),x(1),2)*x(2)) + +The remaining dependencies + +xi(1) depends on x(1) + +c(16) depends on x(1) + +c(14) depends on x(1) + +c(11) depends on x(1) + + + + + %The real- and the imaginary part of the nonlinear Schroedinger + %equation + + deq 1:= u(1,1)+u(2,2,2)+2*u 1**2*u 2+2*u 2**3$ + + + + deq 2:=-u(2,1)+u(1,2,2)+2*u 1*u 2**2+2*u 1**3$ + + + + %Because this is not a single equation the two assignments + + sder 1:=u(2,2,2)$ + + sder 2:=u(1,2,2)$ + + + + %are necessary. + + cresys()$ + + simpsys()$ + + result()$ + + +The differential equations + +DEQ(1):=u(2,2,2) + + 3 + +2*u(2) + + 2 + +2*u(2)*u(1) + + +u(1,1) + +DEQ(2):= + + -u(2,1) + + 2 + +2*u(2) *u(1) + + +u(1,2,2) + + 3 + +2*u(1) + +The symmetry generators are + +GEN(1):=dx(1) + +GEN(2):=dx(2) + +GEN(3):=du(1)*u(2) + du(2)*u(1) + +GEN(4):=2*dx(2)*x(1) - du(1)*u(2)*x(2) - du(2)*u(1)*x(2) + +GEN(5):=2*dx(1)*x(1) + dx(2)*x(2) - du(1)*u(1) + du(2)*u(2) + +The non-vanishing commutators of the finite subgroup + +COMM(1,4):= 2*dx(2) + +COMM(1,5):= 2*dx(1) + +COMM(2,4):= - du(1)*u(2) - du(2)*u(1) + +COMM(2,5):= dx(2) + +COMM(3,5):= - 2*du(1)*u(2) + 2*du(2)*u(1) + +COMM(4,5):= - 2*dx(2)*x(1) + 3*du(1)*u(2)*x(2) - du(2)*u(1)*x(2) + + + %The symmetries of the system comprising the four equations + + deq 1:=u(1,1)+u 1*u(1,2)+u(1,2,2)$ + + + + deq 2:=u(2,1)+u(2,2,2)$ + + + + deq 3:=u 1*u 2-2*u(2,2)$ + + + + deq 4:=4*u(2,1)+u 2*(u 1**2+2*u(1,2))$ + + + + sder 1:=u(1,2,2)$ + + sder 2:=u(2,2,2)$ + + sder 3:=u(2,2)$ + + sder 4:=u(2,1)$ + + + + %is obtained by calling + + cresys()$ + + simpsys()$ + +Determining system is not completely solved + + +The remaining equations are + + +GL(1):=df(c(5),x(2),2) + df(c(5),x(1)) + +GL(2):=df(c(5),x(2),x(1)) + df(c(5),x(2),3) + + +The remaining dependencies + +c(5) depends on x(1),x(2) + + +Number of functions is 21 + + df(c 5,x 1):=-df(c 5,x 2,2)$ + + + + df(c 5,x 2,x 1):=-df(c 5,x 2,3)$ + + + + simpsys()$ + + result()$ + + +The differential equations + +DEQ(1):=u(1,2,2) + u(1,2)*u(1) + u(1,1) + +DEQ(2):=u(2,2,2) + u(2,1) + +DEQ(3):= - 2*u(2,2) + u(2)*u(1) + + 2 +DEQ(4):=4*u(2,1) + 2*u(2)*u(1,2) + u(2)*u(1) + +The symmetry generators are + +GEN(1):=dx(1) + +GEN(2):=dx(2) + +GEN(3):=du(2)*u(2) + +GEN(4):=2*dx(2)*x(1) + 2*du(1) + du(2)*u(2)*x(2) + + 2 +GEN(5):= 4*dx(1)*x(1) + + + 4*dx(2)*x(2)*x(1) + + 4*du(1)*( - u(1)*x(1) + x(2)) + + 2 + + du(2)*u(2)*(x(2) - 2*x(1)) + +GEN(6):=4*dx(1)*x(1) + 2*dx(2)*x(2) - 2*du(1)*u(1) - du(2)*u(2) + +GEN(7):=du(1)*(2*df(c(5),x(2)) - c(5)*u(1)) + du(2)*c(5)*u(2) + +The remaining dependencies + +c(5) depends on x(1),x(2) + + + +Constraints + + +df(c(5),x(1)):= - df(c(5),x(2),2) + + + +df(c(5),x(2),x(1)):= - df(c(5),x(2),3) + + + +The non-vanishing commutators of the finite subgroup + +COMM(1,4):= 2*dx(2) + +COMM(1,5):= 8*dx(1)*x(1) + 4*dx(2)*x(2) - 4*du(1)*u(1) - 2*du(2)*u(2) + +COMM(1,6):= 4*dx(1) + +COMM(2,4):= du(2)*u(2) + +COMM(2,5):= 4*dx(2)*x(1) + 4*du(1) + 2*du(2)*u(2)*x(2) + +COMM(2,6):= 2*dx(2) + +COMM(4,6):= - 4*dx(2)*x(1) - 4*du(1) - 2*du(2)*u(2)*x(2) + + 2 +COMM(5,6):= - 16*dx(1)*x(1) + + - 16*dx(2)*x(2)*x(1) + + + 16*du(1)*(u(1)*x(1) - x(2)) + + 2 + 4*du(2)*u(2)*( - x(2) + 2*x(1)) + + + + %The symmetries of the subsystem comprising equation 1 and 3 are + %obtained by + + cresys(deq 1,deq 3)$ + + simpsys()$ + + result()$ + + +The differential equations + +DEQ(1):=u(1,2,2) + u(1,2)*u(1) + u(1,1) + +DEQ(3):= - 2*u(2,2) + u(2)*u(1) + +The symmetry generators are + +GEN(1):=dx(1) + +GEN(2):=dx(2) + +GEN(3):=du(2) + +GEN(4):=2*dx(2)*x(1) + 2*du(1) + du(2)*x(2) + +GEN(5):=2*dx(1)*x(1) + dx(2)*x(2) - du(1)*u(1) + + 2 +GEN(6):= 4*dx(1)*x(1) + + + 4*dx(2)*x(2)*x(1) + + 4*du(1)*( - u(1)*x(1) + x(2)) + + 2 + + du(2)*x(2) + +GEN(7):=du(2)*c(11) + +The remaining dependencies + +c(11) depends on x(1) + + + +The non-vanishing commutators of the finite subgroup + +COMM(1,4):= 2*dx(2) + +COMM(1,5):= 2*dx(1) + +COMM(1,6):= 8*dx(1)*x(1) + 4*dx(2)*x(2) - 4*du(1)*u(1) + +COMM(2,4):= du(2) + +COMM(2,5):= dx(2) + +COMM(2,6):= 4*dx(2)*x(1) + 4*du(1) + 2*du(2)*x(2) + +COMM(4,5):= - 2*dx(2)*x(1) - 2*du(1) - du(2)*x(2) + + 2 +COMM(5,6):= 8*dx(1)*x(1) + + + 8*dx(2)*x(2)*x(1) + + 8*du(1)*( - u(1)*x(1) + x(2)) + + 2 + + 2*du(2)*x(2) + + + %The result for all possible subsystems is discussed in detail in + %''Symmetries and Involution Systems: Some Experiments in Computer + %Algebra'', contribution to the Proceedings of the Oberwolfach + %Meeting on Nonlinear Evolution Equations, Summer 1986, to appear. + +end; +(TIME: spde 19070 19790)