LEGENDREP _ _ _ _ _ _ _ _ _ _ _ _ operator
The binary LegendreP operator computes the nth Legendre Polynomial which is a special case of the nth Jacobi Polynomial with
LegendreP(n,x) := JacobiP(n,0,0,x)
The ternary form returns the associated Legendre Polynomial (see below).
LegendreP(<integer>,<expression>,<expression>)
LegendreP(3,xx); 2 xx*(5*xx - 3) ---------------- 2 LegendreP(3,2,xx); 2 15*xx*( - xx + 1)
The ternary form of the operator LegendreP is the associa ted Legendre Polynomial defined as
P(n,m,x) = (-1)**m * (1-x**2)**(m/2) * df(LegendreP(n,x),x,m)