LaguerreP INDEX

LAGUERREP _ _ _ _ _ _ _ _ _ _ _ _ operator

The LaguerreP operator computes the nth Laguerre Polynomial. The two argument call of LaguerreP is a (common) abbreviation of LaguerreP(n,0,x).

syntax:

LaguerreP(<integer>,<expression>) or

LaguerreP(<integer>,<expression>,<expression>)

examples:


LaguerreP(3,xx); 

       3        2
  (- xx   + 9*xx   - 18*xx + 6)/6



LaguerreP(2,3,4); 

  -2

Laguerre polynomials are computed using the recurrence relation:

LaguerreP(n,a,x) := (2n+a-1-x)/n*LaguerreP(n-1,a,x) - (n+a-1) * LaguerreP(n-2,a,x) with

LaguerreP(0,a,x) := 1 and LaguerreP(2,a,x) := -x+1+a