
REDUCE 3.7 Installation and Rebuilding

Codemist Ltd

March 24, 1999

1 Introduction

This document explains how to install, build or rebuild REDUCE 3.7 using
the CSL Lisp system. It covers the cases where your computer runs Mi-
crosoft Windows 95, 98 or NT, or Linux or various brands of Unix. Much
of the description here will only be relevant to those who have obtained the
“professional” version of REDUCE, which comes complete will all its source
code. If only the “personal” version is available all material here that relates
to source code may be ignored.

2 Installation

2.1 Windows

REDUCE is installed by running the setup program that forms part of the
distribution. This prompts to discover which components of REDUCE you
want to install and where you would like the files placed.

Note that under Windows two versions of the REDUCE executable are
provided. The one called r37.exe runs in a window in the usual way. The
one called r37c.exe runs as an old-fashioned command-line program. This
version may prove more useful if REDUCE is to be run from a script. If you
often use a command-window it may be useful to create a simple one-line
batch file called r37.bat and contents

x:\r37\lisp\csl\win32\r37 %*

(where you should replace x: with the path to where the REDUCE files
were installed) and place this file in a directory that is on your search path.
You can the launch REDUCE by just issuing the command r37. As an
alternative you could add the REDUCE executable directory to your path.
These steps have not been automated as part of the installatiom procedure
since many users will be content launching REDUCE by clicking on the
relevant icon.

1

2.2 Unix and Linux

REDUCE is supplied as a collection of compressed archives. They are called
r37exec.tar.gz REDUCE executables plus a few support files
r37xmpl.tar.gz Example files nd matching logs
r37doc.tar.gz Documentation
r37src.tar.gz Source code of REDUCE
r37lisp.tar.gz Source code of the CSL Lisp system

You will first need to access the files on the CDROM. This may involve
mounting it: you will use whatever procedure you usually do for accessing a
CDROM. I will suppose that this makes the files available with paths such
as /cdrom/r37exec.tar.gz but the exact path will depend on how your
Linux is configured.

Select a directory within which you wish to install REDUCE. Select it
is the current directory. Unpacking the tar files will create a sub-directory
called “r37” and everything that is unpacked will be within this directory. If
you are the system manager you might reasonably select /usr/local, and
if you are an individual user you might just start in your home directory.
In each case unpack such of the archives as you will want using a command
like:

cd /usr/local
tar xvfz /cdrom/r37exec.tar.gz

It is suggested that to start with you unpack the executables, the ex-
amples and the documentation. Between them these will use up between
25 and 30 Mbytes of disc space. The directory structure created will be as
shown below. Names in bold fixed-pitch type are represent directories, while

2

those in italic are files.

r37

doc

html

[
...
r37.html

install.pdf
r37.pdf
uguide.pdf
util

gnuplot

lisp

csl

csl-c
cslbase

linux(etc)

log
Makefile
r37
r37.img

util
[

setexec
log

packages

 ...

support
[

patches.red
...

If you have unpacked the REDUCE executables you will find a file
r37/lisp/csl/linux/r37, and to make it easier to use the system you
might like to install a link to it from some convenient place, eg using a
command similar to one of the two following ones:

ln -s /usr/local/r37/lisp/csl/linux/r37 /usr/local/bin/r37
ln -s ~/r37/lisp/csl/linux/r37 ~/bin/r37

For these to make sense either /usr/local/bin or the bin sub-directory of
your home directory should be on your usual search path. If you set up the
a symbolic link as shown then reduce should be able to find the r37.img file
it needs without you having to do anything more.

If you are running on some version of Unix it may be that file-permissions
were not set up when the REDUCE files moved to your machine. Select the
r37/lisp/csl/util directory as current and run the script “setexec”

cd r37/lisp/csl/util
source setexec

to correct this if you need to (and you can tell that if you get a complaint
when you try to execute one of the scripts in the util directory).

Documentation is placed in r37/doc, with the manual in a form suitable
for use with Adobe’s Acrobat reader as r37/doc/r37.pdf or some more
browsable HTML help accessed starting from r37/doc/html/r37.html.

3

For Linux the provisions of the GNU Public Library License mean that
you have to be provided with object files for all the executables that together
form REDUCE. The reason for this is that you may want to (or indeed need
to) re-link them with a newer version of the Linux system libraries. Because
different Linux installations may have been installed with different genera-
tions of these libraries and some versions are not compatible with others it
could be that you will find that when first unpacked the r37 executable will
not load and run at all. To re-build it from object code you should use the
script called relink that is in the r37/lisp/csl/util directory:

cd r37/lisp/csl/linux
sh ../util/relink

To use this script you will have to have a set of Linux development tools
available, specifically gcc and the usual C libraries.

If you intend to use the REDUCE interface to gnuplot you should en-
sure that that package is installed. Gnuplot itself is not part of REDUCE
and it may be easiest for you to fetch and install it in some quite indepen-
dent way — for instance many Linux CDROMS or web mirrors provide it
as a standard option for your installation. The directory r37/gnuplot con-
tains copies of gnuplot files as they would be found on a typical software
archive, and if necessary you can unpack and install from there. For further
information about gnuplot, its installation and use, you should check the
documentation files that accompany it and the web sites that they reference.

3 Testing an installation

On first installing REDUCE it may make sense to run all the REDUCE test
scripts that have been provided. This should make it possible to verify that
that installation was correct, and it also as a side-effect produces a log file
that compares the speed REDUCE has on your machine with that observed
on a reference one at Codemist. For the initial release of REDUCE 3.7 this
reference system is based on an Intel Pentium II running at 400 MHz, and
the tests were run under Windows NT 4.0.

To run the complete tests you need to select the correct part of the
REDUCE tree as your current directory, and in the case of Unix systems
you need to make sure that the executable status of various files are prop-
erly set. The setexec script in r37/lisp/csl/util arranges this. Then
util/testall runs all the tests and util/checkall compares the results
with a set of reference logs. At the end you will find your own logs from indi-
vidual packages in r37/log, a file showing any differences between your re-
sults and the reference set in r37/csl/lisp/<system>/log/checkall.log
and a summary of timing in r37/csl/lisp/<system>/log/times.log.

4

Windows Unix

cd r37\lisp\csl\win32
..\util\testall
..\util\checkall

cd r37/lisp/csl/util
sh ./setexec
cd ../linux
../util/testall
../util/checkall

On the reference computer running the full set of tests takes between 20
and 30 minutes on an otherwise unused machine. If you interrupt the tests
part way through the script util/testrest (used just as util/testall is)
will continue running tests from wherever you broke off. Some workstations
may be substantially slower (certainly by up to a factor of ten) than the
reference machine so you may need some patience here.

The log/checkall.log file will contain a section for each test that was
run. The differences reported will certainly include every line that reports
how long anything took. If you have installed any patches in your version
of REDUCE those too might cause changes in the test output (and these
changes will not then represent errors). Also on different platforms the
exact results from some numeric calculations done in machine-arithmetic
will differ.

The file log/times.log has a line in it for each of the test files, and this
records the time that this test tool on both the local and the reference com-
puter. It ends up with giving a speed ratio between the two machines based
on all these results. Each test has two times associated with it. One includes
and the other excludes “garbage collection” time. High garbage collection
overheads are generally an indication that you are short of memory. The
time excluding garbage collection is expected to be tolerably consistent, but
even then it can vary to 5 to 10 percent even on a single computer. Such is-
sues as the exact position and layout of files on the disc or other background
activity that the computer runs at the same time have such effects.

4 Removal

For Unix you can remove REDUCE by just removing the r37 directory and
all its contents, and any symbolic links you made into it. For Windows
de-installation is via the “add/remove programs” item on the control panel
as usual.

5 Applying patches

From time to time minor updates and corrections to REDUCE will be
published: these can be located via the REDUCE home page, which is
http://www.rrz.uni-koeln.de/REDUCE/. The corrections will be present
as a downloadable file called patches.red. Comments in this file should

5

explain what changes are being made, but the bulk of the material there
is not intended for the casual reader. To install the patches you should
first locate the patches file in the REDUCE file structure. It should be
r37/packages/support/patches.red. Make a safe backup copy of this
file, and replace it with the new copy that you have downloaded. Read the
comments in the new patches file to see what has changed. Note that when-
ever you install new patches you can expect some changes in the REDUCE
test logs, at least in formatting and layout. Now go

cd r37/lisp/csl/linux (or win32, or whatever)
back up r37.img for safety here, please
sh ../util/patchup (or ..\util\patchup)

REDUCE should run for a short time and update r37.img with the new
patches. When you next launch REDUCE its startup banner should reflect
the new date associated with the version of the patches file you have just
incorporated. Note that there is no way to remove a set of patches short of
re-building the whole of REDUCE from source: just putting back an older
patches.red file and re-applying that is not guaranteed to undo all effects
of an intermediate patch. So keep a copy of your original r37.img so you
can re-instate that if you have any trouble. That should be the only file
changed by the patchup job.

6 Re-building from the REDUCE sources

If you have a copy of the Professional Version of REDUCE it comes complete
with all source files. Users of the Personal system do not have the files
needed to do this and can ignore the rest of this document. You may wish
to recompile either just one REDUCE module or the whole system. This
will mainly be the case if you are developing new packages for REDUCE.
The recipe is

cd r37/lisp/csl/linux (or win32, or whatever)
../util/full37

This runs for a two or three minutes on the reference system, and generates
a log file in log/full37.log. The version of r37.img that it re-creates
should have all current patches installed.

To re-compile just a single REDUCE package, for instance groebner,
use the sequence

cd r37/lisp/csl/linux (or win32, or whatever)
../util/package groebner

6

7 Re-compiling the CSL Lisp system

REDUCE is built on top of a Lisp system: in this place that Lisp is called
CSL and all its sources are included in the Professional Version. When dis-
tributed in this way the CSL Lisp system is intended for use just in support
of REDUCE so detailed information about its capabilities and support for
it (apart for as a component of REDUCE) is not provided. The core parts
of CSL are coded in the C language. This makes it (fairly) easy to move
CSL and hence REDUCE to new computer architectures provided they have
reliable C compilers and can give enough of an illusion that they support
32-bit code. Image files such as r37.img can be created using a CSL that
runs on one computer architecture and re-loaded on another. Thus to mount
REDUCE on another type of computer you just need to compile this C code.
Create a new directory, calling it r37/lisp/csl/my-machine and select it
as the current directory. Select one of the ready-made version of Makefile
from ../util and copy it of link it into this new directory. If your local
configuration is not exactly the same as one of the ones already catered for
you will need to edit the Makefile by hand. If you are attempting this sort
of re-compilation it is assumed that you already know enough to sort out
the details of that for yourself. In particular you may well find that your
C compiler needs some special flags setting or (even more probable) that
custom directives are needed to get all relevant libraries scanned.

For use on Windows you will find Makefile.w32 is set up to use the
Watcom C compiler (tested using version 11), and Makefile.vc to use Mi-
crosoft’s Visual C++ (tested using version 5). Makefile.gcc is a good
starting place for a generic Unix port using the widely available free GNU
C compiler.

It should then be the case that just saying make r37 (or make r37.exe
in the Windows case) should build the relevant executable. There is no
guarantee that the source code will compile either first time or correctly on
any system other than the one you specified when you originally obtained
it, and porting to new architectures can call for changes in various system-
dependent parts of the code. Thus this level of re-compilation is intended to
provide flexibility for the expert who can cope with such issues for themselves
rather than being a fully-supported and guaranteed recipe for use by novices.
In particular in the past newer versions of C compilers have sometimes been
incompatible with older versions from the same vendor and Codemist does
not guarantee to keep the CSL C sources updated to cope with all such
possible oddities.

As previously mentioned, when you have a new r37 executable you can
copy and existing r37.img to the directory it lives in (REDUCE looks for
this image file in the directory it finds its executable in) and test the system.

Of course even though you have the capability to re-compile all of RE-
DUCE in this way that does not mean you have permission to use it beyond

7

the terms of your license, and in particular you may not distribute versions
of the software that you have compiled for existing or new machines.

8 Creating new profile information

Parts of the REDUCE source code are translated into C and incorporated
as part of the CSL Lisp system. Doing this helps with performance. After
major changes to the REDUCE sources it may be useful to be able to review
which parts of REDUCE deserve this optimisation and to re-create the C.
Doing this is a fairly costly business and only a very few users are liable to
want to attempt it. The recipe (shows as done on Windows this time) is

cd r37\lisp\csl\win32
make slowr37.exe
..\util\boot37

This makes a special version of REDUCE that has full functionality but
which is much larger and slower than the final version. It does not have any
parts of it compiled into C.

..\util\profile

The job that profiles REDUCE runs for over an hour on the reference ma-
chine. It creates a file profile.dat in the current directory. This file lists
the most heavily used functions as revealed by running all the REDUCE
test scripts. You then need to copy this file to the place where the standard
copy of it lives and use it to guide selective compilation into C:

copy profile.dat ..\csl-c
..\util\c-code37

Finally you must re-compile r37.exe and re-build r37.img to match. If you
do one of these but not the other the system can be in an incoherent state
and may crash arbitrarily:

make r37.exe
..\util\full37

After such a major re-build it would be prudent to run all the tests again:

del ..\..\..\log*.rlg
..\util\testall
..\util\checkall

and inspect checkall.log to see that all is well.

8

