LegendreP INDEX

LEGENDREP _ _ _ _ _ _ _ _ _ _ _ _ operator

The binary LegendreP operator computes the nth Legendre Polynomial which is a special case of the nth Jacobi Polynomial with

LegendreP(n,x) := JacobiP(n,0,0,x)

The ternary form returns the associated Legendre Polynomial (see below).

syntax:

LegendreP(<integer>,<expression>) or

LegendreP(<integer>,<expression>,<expression>)

examples:


LegendreP(3,xx); 

          2
  xx*(5*xx   - 3)
  ----------------
         2



LegendreP(3,2,xx); 

              2
  15*xx*( - xx   + 1)

The ternary form of the operator LegendreP is the associa ted Legendre Polynomial defined as

P(n,m,x) = (-1)**m * (1-x**2)**(m/2) * df(LegendreP(n,x),x,m)