groebnerf INDEX

GROEBNERF _ _ _ _ _ _ _ _ _ _ _ _ operator

syntax:

groebnerf({<exp>, ...}[,{},{<nz>, ... }]);

where {<exp>, ... } is a list of expressions or equations, and {<nz>,... } is an optional list of polynomials to be considered as non zero for this calculation. An empty list must be passed as second argument if the non-zero list is specified.

groebnerftries to separate polynomials into individual factors and to branch the computation in a recursive manner (factorization tree). The result is a list of partial Groebner bases. Multiplicities (one factor with a higher power, the same partial basis twice) are deleted as early as possible in order to speed up the calculation.

The third parameter of groebnerf declares some polynomials nonzero. If any of these is found in a branch of the calculation the branch is canceled.

example:


groebnerf({ 3*x**2*y+2*x*y+y+9*x**2+5*x = 3,  
            2*x**3*y-x*y-y+6*x**3-2*x**2-3*x = -3, 
            x**3*y+x**2*y+3*x**3+2*x**2 }, {y,x});

       {{Y - 3,X},

                      2
    {2*Y + 2*X - 1,2*X  - 5*X - 5}}

related:

_ _ _ groebresmaxvariable

_ _ _ groebmonfac variable

_ _ _ groebrestriction variable

_ _ _ groebner operator

_ _ _ gvarslast variable

_ _ _ groebopt switch

_ _ _ groebprereduce switch

_ _ _ groebfullreduction switch

_ _ _ gltbasis switch

_ _ _ gltb variable

_ _ _ glterms variable

_ _ _ groebstat switch

_ _ _ trgroeb switch

_ _ _ trgroebs switch

_ _ _ groebnert operator