Artifact fba44efdb8e8ae926aea49ba65139769abb8cade5f4c0896ee46af733a24db8d:
- Executable file
r37/lisp/csl/html/r37_0657.html
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 807) [annotate] [blame] [check-ins using] [more...]
<A NAME=MODSR> <TITLE>MODSR</TITLE></A> <b><a href=r37_idx.html>INDEX</a></b><p><p> <B>MODSR</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>package</B><P> <P> <P> <P> Author: Herbert Melenk <P> <P> This package supports solve (M_SOLVE) and roots (M_ROOTS) operators for modular polynomials and modular polynomial systems. The moduli need not be primes. M_SOLVE requires a modulus to be set. M_ROOTS takes the modulus as a second argument. For example: <P> <P> <P><PRE><TT> on modular; setmod 8; m_solve(2x=4); -> {{X=2},{X=6}} m_solve({x^2-y^3=3}); -> {{X=0,Y=5}, {X=2,Y=1}, {X=4,Y=5}, {X=6,Y=1}} m_solve({x=2,x^2-y^3=3}); -> {{X=2,Y=1}} off modular; m_roots(x^2-1,8); -> {1,3,5,7} m_roots(x^3-x,7); -> {0,1,6} </TT></PRE><P>