Artifact c64d18423db6883f7ed2879773fbf6b389fc705fa8327056435d600ba9825fc5:
- Executable file
r37/lisp/csl/html/r37_0154.html
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2498) [annotate] [blame] [check-ins using] [more...]
<A NAME=INT> <TITLE>INT</TITLE></A> <b><a href=r37_idx.html>INDEX</a></b><p><p> <B>INT</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P> <P> <P> <P> The <em>int</em> operator performs analytic integration on a variety of functions. <P> <P> <P> <H3> syntax: </H3> <em>int</em>(<expression>,<kernel>) <P> <P> <P> <expression> can be any scalar expression. involving polynomials, log functions, exponential functions, or tangent or arctangent expressions. <em>int</em> attempts expressions involving error functions, dilogarithms and other trigonometric expressions. Integrals involving algebraic extensions (such as square roots) may not succeed. <kernel> must be a REDUCE <A HREF=r37_0002.html>kernel</A>. <P> <P> <P> <H3> examples: </H3> <P><PRE><TT> int(x**3 + 3,x); 3 X*(X + 12) ----------- 4 int(sin(x)*exp(2*x),x); 2*X E *(COS(X) - 2*SIN(X)) - ------------------------ 5 int(1/(x^2-2),x); SQRT(2)*(LOG( - SQRT(2) + X) - LOG(SQRT(2) + X)) ------------------------------------------------ 4 int(sin(x)/(4 + cos(x)**2),x); COS(X) ATAN(------) 2 - ------------ 2 int(1/sqrt(x^2-x),x); SQRT(X)*SQRT(X - 1) INT(-------------------,X) 2 X -X </TT></PRE><P>Note that REDUCE couldn't handle the last integral with its defaul t integrator, since the integrand involves a square root. However, the integral can be found using the <A HREF=r37_0265.html>algint</A> package. Alternatively, you could add a rule using the <A HREF=r37_0199.html>let</A> statement to evaluate this integral. <P> <P> The arbitrary constant of integration is not shown. Definite integrals can be found by evaluating the result at the limits of integration (use <A HREF=r37_0330.html>rounded</A>) and subtracting the lower from the higher. Ev aluation can be easily done by the <A HREF=r37_0182.html>sub</A> operator. <P> <P> When <em>int</em> cannot find an integral it returns an expression involving formal <em>int</em> expressions unless the switch <A HREF=r37_0288.html>failhard</A> has been set. If not all of the expression can be integrated, the switch <A HREF=r37_0311.html>nolnr</A> controls whether a partially integrated result should be returned or not. <P> <P> <P> <P>