Artifact b95c278d24bfd3065c2768bcc34617cf98f40b63809087117d5a53836ae5084b:
- Executable file
r37/lisp/csl/html/r37_0502.html
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 952) [annotate] [blame] [check-ins using] [more...]
<A NAME=LaguerreP> <TITLE>LaguerreP</TITLE></A> <b><a href=r37_idx.html>INDEX</a></b><p><p> <B>LAGUERREP</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P> <P> The <em>LaguerreP</em> operator computes the nth Laguerre Polynomial. The two argument call of LaguerreP is a (common) abbreviation of LaguerreP(n,0,x). <P> <P> <P> <H3> syntax: </H3> <em>LaguerreP</em>(<integer>,<expression>) or <P> <P> <em>LaguerreP</em>(<integer>,<expression>,<expression>) <P> <P> <P> <P> <H3> examples: </H3> <P><PRE><TT> LaguerreP(3,xx); 3 2 (- xx + 9*xx - 18*xx + 6)/6 LaguerreP(2,3,4); -2 </TT></PRE><P>Laguerre polynomials are computed using the recurrence relation: <P> <P> LaguerreP(n,a,x) := (2n+a-1-x)/n*LaguerreP(n-1,a,x) - (n+a-1) * LaguerreP(n-2,a,x) with <P> <P> LaguerreP(0,a,x) := 1 and LaguerreP(2,a,x) := -x+1+a <P> <P> <P>