Artifact b74a307a5e82341061fde49cfbd34987ef4d101b2f37e74466f0c71df9bd4846:
- Executable file
r37/lisp/csl/html/r37_0344.html
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2032) [annotate] [blame] [check-ins using] [more...]
<A NAME=MATEIGEN> <TITLE>MATEIGEN</TITLE></A> <b><a href=r37_idx.html>INDEX</a></b><p><p> <B>MATEIGEN</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P> <P> <P> <P> The <em>mateigen</em> operator calculates the eigenvalue equation and the corresponding eigenvectors of a <A HREF=r37_0345.html>matrix</A>. <P> <H3> syntax: </H3> <P> <P> <em>mateigen</em>(<matrix-id>,<tag-id>) <P> <P> <P> <matrix-id> must be a declared matrix of values, and <tag-id> must b e a legal REDUCE identifier. <P> <P> <P> <H3> examples: </H3> <P><PRE><TT> aa := mat((2,5),(1,0))$ mateigen(aa,alpha); 2 {{ALPHA - 2*ALPHA - 5, 1, 5*ARBCOMPLEX(1) MAT(1,1) := ---------------, ALPHA - 2 MAT(2,1) := ARBCOMPLEX(1) }} charpoly := first first ws; 2 CHARPOLY := ALPHA - 2*ALPHA - 5 bb := mat((1,0,1),(1,1,0),(0,0,1))$ mateigen(bb,lamb); {{LAMB - 1,3, [ 0 ] [ARBCOMPLEX(2)] [ 0 ] }} </TT></PRE><P>The <em>mateigen</em> operator returns a list of lists of three elements. The first element is a square free factor of the characteristic polynomial; the second element is its multiplicity; and the third element is the corresponding eigenvector. If the characteristic polynomial can be completely factored, the product of the first elements of all the sublists will produce the minimal polynomial. You can access the various parts of the answer with the usual list access operators. <P> <P> If the matrix is degenerate, more than one eigenvector can be produced for the same eigenvalue, as shown by more than one arbitrary variable in the eigenvector. The identification numbers of the arbitrary complex variables shown in the examples above may not be the same as yours. Note that since <em>lambda</em> is a reserved word in REDUCE, you cannot use it as a tag-id for this operator. <P> <P> <P>