Artifact ae079319252ca447ffb4a2b255ef72c456587afc84fc3dc3b0ab5569b0ea5e40:
- Executable file
r37/lisp/csl/html/r37_0383.html
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1052) [annotate] [blame] [check-ins using] [more...]
<A NAME=dd_groebner> <TITLE>dd_groebner</TITLE></A> <b><a href=r37_idx.html>INDEX</a></b><p><p> <B>DD_GROEBNER</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P> <P> For a homogeneous system of polynomials under <A HREF=r37_0364.html>graded term order</A>, <A HREF=r37_0357.html>gradlex term order</A>, <A HREF=r37_0358.html>revgradlex term order</A> <P> <P> or <A HREF=r37_0363.html>weighted term order</A> a Groebner Base can be computed with limiting the grade of the intermediate S polynomials: <P> <H3> syntax: </H3> <P> <P> <em>dd_groebner</em>(<d1>,<d2>,<plist>) <P> <P> <P> where <d1> is a non negative integer and <d2> is an integer or ``infinity". A pair of polynomials is considered only if the grade of the lcm of their head terms is between <d1> and <d2>. For the term orders <em>graded</em> or <em>weighted</em> the (first) weight vector is used for the grade computation. Otherwise the total degree of a term is used. <P> <P>