Artifact 8c9117902b252b34d8c3c263abbef642f8ad7b220d90c9a50bd0996db809a0f3:
- Executable file
r37/lisp/csl/html/r37_0305.html
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1150) [annotate] [blame] [check-ins using] [more...]
<A NAME=MODULAR> <TITLE>MODULAR</TITLE></A> <b><a href=r37_idx.html>INDEX</a></b><p><p> <B>MODULAR</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>switch</B><P> <P> <P> <P> When <em>modular</em> is on, polynomial coefficients are reduced by the modulus set by <A HREF=r37_0104.html>setmod</A>. If no modulus has been set, <em>modular</em> has no effect. <P> <P> <P> <H3> examples: </H3> <P><PRE><TT> setmod 2; 1 on modular; (x+y)**2; 2 2 X + Y 145*x**2 + 20*x**3 + 17 + 15*x*y; 2 X + X*Y + 1 </TT></PRE><P>Modular operations are only conducted on the coefficients, not the exponents. The modulus is not restricted to being prime. When the modulus is prime, division by a number not relatively prime to the modulus results in a <Zero divisor> error message. When the modulus is a composite number, division by a power of the modulus results in an error message, but division by an integer which is a factor of the modulus does not. The representation of modular number can be influenced by <A HREF=r37_0269.html>balanced_mod</A>. <P> <P> <P>