Artifact 8867e740e625451d015da18cb6a6049db6d39f9c26764b9cf7033e43ab187f99:
- Executable file
r37/lisp/csl/html/r37_0382.html
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 940) [annotate] [blame] [check-ins using] [more...]
<A NAME=gindependent_sets> <TITLE>gindependent_sets</TITLE></A> <b><a href=r37_idx.html>INDEX</a></b><p><p> <B>GINDEPENDENT\_SETS</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P> <P> <P> <P> <P> <H3> syntax: </H3> <em>gindependent_sets</em>(<bas>) <P> <P> <P> <P> where <bas> is a <A HREF=r37_0382.html>groebner</A> basis in any <em>term order</em> (which must be the current <em>term order</em>) with the specified variables (see <A HREF=r37_0352.html>ideal parameters</A>). <P> <P> <em>Gindependent_sets</em>computes the maximal left independent variable sets of the ideal, that are the variable sets which play the role of free parameters in the current ideal basis. Each set is a list which is a subset of the variable list. The result is a list of these sets. For an ideal with dimension zero the list is empty. The Kredel-Weispfenning algorithm is used. <P> <P>