Artifact 45ff95c737d01385eed2eea030ebc87f279935824fc071d38df4be76b69ccc70:
- Executable file
r37/lisp/csl/html/r37_0629.html
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1825) [annotate] [blame] [check-ins using] [more...]
<A NAME=Jordan> <TITLE>Jordan</TITLE></A> <b><a href=r37_idx.html>INDEX</a></b><p><p> <B>JORDAN</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P> <P> The operator <em>jordan</em> computes the Jordan normal form J of a <A HREF=r37_0345.html>matrix</A> (A say). It returns {J,P,P^-1} where P*J*P^-1 = A. <P> <P> <P> <H3> syntax: </H3> <em>jordan</em>(<matrix>) <P> <P> <matrix> :- a square <A HREF=r37_0345.html>matrix</A>. <P> <P> <P> Field Extensions: By default, calculations are performed in the rational numbers. To extend this field the <em>arnum</em> package can be used. The package must first be loaded by load_package arnum;. The field can now be extended by using the defpoly command. For example, defpoly sqrt2**2-2; will extend the field to include the square root of 2 (now defined by sqrt2). See <A HREF=r37_0626.html>frobenius</A> for an example. <P> <P> Modular Arithmetic: <em>Jordan</em> can also be calculated in a modular base. To do this first type on modular;. Then setmod p; (where p is a prime) will set the modular base of calculation to p. By further typing on balanced_mod the answer will appear using a symmetric modular representation. See <A HREF=r37_0627.html>ratjordan</A> for an example. <P> <P> <P> <H3> examples: </H3> <P><PRE><TT> a := mat((1,x),(0,x)); [1 x] a := [ ] [0 x] jordan(a); { [1 0] [ ] [0 x] , [ 1 x ] [------- --------------] [ x - 1 2 ] [ x - 2*x + 1 ] [ ] [ 1 ] [ 0 ------- ] [ x - 1 ] , [x - 1 - x ] [ ] [ 0 x - 1] } </TT></PRE><P>