Artifact 45e44e92c974ef248967044225da10cf30cf725c47e2058e6560b10fe51e4e57:
- Executable file
r37/lisp/csl/html/r37_0616.html
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1477) [annotate] [blame] [check-ins using] [more...]
<A NAME=svd> <TITLE>svd</TITLE></A> <b><a href=r37_idx.html>INDEX</a></b><p><p> <B>SVD</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P> <P> <P> <P> Singular value decomposition: <P> <P> <P> <H3> syntax: </H3> <em>svd</em>(<matrix>) <P> <P> <P> <matrix> :- a <A HREF=r37_0345.html>matrix</A> containing only numeric entries. <P> <P> <em>svd</em>computes the singular value decomposition of <matrix>. <P> <P> It returns <P> <P> {U,P,V} <P> <P> where A = U*P*V^T <P> <P> and P = diag(sigma(1) ... sigma(n)). <P> <P> sigma(i) for i= 1 ... n are the singular values of <matrix>. <P> <P> n is the column dimension of <matrix>. <P> <P> The singular values of <matrix> are the non-negative square roots of the eigenvalues of A^T*A. <P> <P> U and V are such that U*U^T = V*V^T = V^T*V = Id. Id is the identity matrix. <P> <P> <P> <H3> examples: </H3> <P><PRE><TT> Q := mat((1,3),(-4,3)); [1 3] q := [ ] [-4 3] on rounded; svd(Q); { [ 0.289784137735 0.957092029805] [ ] [ - 0.957092029805 0.289784137735] , [5.1491628629 0 ] [ ] [ 0 2.9130948854] , [ - 0.687215403194 0.726453707825 ] [ ] [ - 0.726453707825 - 0.687215403194] } </TT></PRE><P>