Artifact 3fb6a29ba0676734204932dafd99c532001eaec2cbd9c45a3aaeb3dec0f0daa7:
- Executable file
r37/lisp/csl/html/r37_0426.html
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2198) [annotate] [blame] [check-ins using] [more...]
<A NAME=num_solve> <TITLE>num_solve</TITLE></A> <b><a href=r37_idx.html>INDEX</a></b><p><p> <B>NUM_SOLVE</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P> <P> <P> <P> An adaptively damped Newton iteration is used to find an approximative root of a function (function vector) or the solution of an <A HREF=r37_0045.html>equation</A> (equation system). The expressions must have continuous derivatives for all variables. A starting point for the iteration can be given. If not given random values are taken instead. When the number of forms is not equal to the number of variables, the Newton method cannot be applied. Then the minimum of the sum of absolute squares is located instead. <P> <P> With <A HREF=r37_0274.html>complex</A> on, solutions with imaginary parts can be found, if either the expression(s) or the starting point contain a nonzero imaginary part. <P> <P> <P> <H3> syntax: </H3> <em>num_solve</em>(<exp>, <var>[=<val>][,accuracy=<a>][, iterations=<i>]) <P> <P> or <P> <P> <em>num_solve</em>({<exp>,...,<exp>}, <var>[=<val>],..., <var>[=<val>] [,accuracy=<a>][,iterations=<i>]) <P> <P> or <P> <P> <em>num_solve</em>({<exp>,...,<exp>}, {<var>[=<val>],... ,<var>[=<val>]} [,accuracy=<a>][,iterations=<i>]) <P> <P> <P> <P> where <exp> are function expressions, <var> are the variables, <val> are optional start values. For <a> and <i> see <A HREF=r37_0423.html>numeric accuracy</A>. <P> <P> <em>num_solve</em>tries to find a zero/solution of the expression(s). Result is a list of equations, where the variables are equated to the coordinates of the result point. <P> <P> The <em>Jacobian matrix</em> is stored as side effect the shared variable <em>jacobian</em>. <P> <P> <P> <H3> examples: </H3> <P><PRE><TT> num_solve({sin x=cos y, x + y = 1},{x=1,y=2}); {X= - 1.8561957251,Y=2.856195584} jacobian; [COS(X) SIN(Y)] [ ] [ 1 1 ] </TT></PRE><P>