Artifact 34bfe3751c63b6afe02fd5fcdff96e5b7fd57cee949704cb98a21f65d1289bbc:
- Executable file
r37/lisp/csl/html/r37_0425.html
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1749) [annotate] [blame] [check-ins using] [more...]
<A NAME=num_min> <TITLE>num_min</TITLE></A> <b><a href=r37_idx.html>INDEX</a></b><p><p> <B>NUM_MIN</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P> <P> <P> <P> The Fletcher Reeves version of the <em>steepest descent</em> algorithms is used to find the <em>minimum</em> of a function of one or more variables. The function must have continuous partial derivatives with respect to all variables. The starting point of the search can be specified; if not, random values are taken instead. The steepest descent algorithms in general find only local minima. <P> <P> <P> <H3> syntax: </H3> <em>num_min</em>(<exp>, <var>[=<val>] [,<var>[=<val>] ... [,accuracy=<a>] [,iterations=<i>]) <P> <P> or <P> <P> <em>num_min</em>(exp, { <var>[=<val>] [,<var>[=<val>] ...] } [,accuracy=<a>] [,iterations=<i>]) <P> <P> <P> where <exp> is a function expression, <var> are the variables in <exp> and <val> are the (optional) start values. For <a> and <i> see <A HREF=r37_0423.html>numeric accuracy</A>. <P> <P> <em>Num_min</em>tries to find the next local minimum along the descending path starting at the given point. The result is a <A HREF=r37_0053.html>list</A> with the minimum function value as first element followed by a list of <A HREF=r37_0045.html>equation</A><em>s</em>, where the variables are equated to the coordinates of the result point. <P> <P> <P> <H3> examples: </H3> <P><PRE><TT> num_min(sin(x)+x/5, x) {4.9489585606,{X=29.643767785}} num_min(sin(x)+x/5, x=0) { - 1.3342267466,{X= - 1.7721582671}} </TT></PRE><P>