Artifact 03cafb91ee81d3c83158bff3f17390e214fa23f9f0ec8f330974eb4b29f15be7:
- Executable file
r37/lisp/csl/html/r37_0503.html
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1057) [annotate] [blame] [check-ins using] [more...]
<A NAME=LegendreP> <TITLE>LegendreP</TITLE></A> <b><a href=r37_idx.html>INDEX</a></b><p><p> <B>LEGENDREP</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P> <P> The binary <em>LegendreP</em> operator computes the nth Legendre Polynomial which is a special case of the nth Jacobi Polynomial with <P> <P> LegendreP(n,x) := JacobiP(n,0,0,x) <P> <P> The ternary form returns the associated Legendre Polynomial (see below). <P> <P> <P> <H3> syntax: </H3> <em>LegendreP</em>(<integer>,<expression>) or <P> <P> <em>LegendreP</em>(<integer>,<expression>,<expression>) <P> <P> <P> <P> <H3> examples: </H3> <P><PRE><TT> LegendreP(3,xx); 2 xx*(5*xx - 3) ---------------- 2 LegendreP(3,2,xx); 2 15*xx*( - xx + 1) </TT></PRE><P>The ternary form of the operator <em>LegendreP</em> is the associa ted Legendre Polynomial defined as <P> <P> P(n,m,x) = (-1)**m * (1-x**2)**(m/2) * df(LegendreP(n,x),x,m) <P> <P> <P>