Artifact 032401090cd6b5c8feb2f7d1879760bb68802c66eda0f8028abd7012effdbb95:
- Executable file
r37/lisp/csl/html/r37_0429.html
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1924) [annotate] [blame] [check-ins using] [more...]
<A NAME=bounds> <TITLE>bounds</TITLE></A> <b><a href=r37_idx.html>INDEX</a></b><p><p> <B>BOUNDS</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P> <P> <P> <P> Upper and lower bounds of a real valued function over an <A HREF=r37_0422.html>interval</A> or a rectangular multivariate domain are comp uted by the operator <em>bounds</em>. The algorithmic basis is the computation with inequalities: starting from the interval(s) of the variables, the bounds are propagated in the expression using the rules for inequality computation. Some knowledge about the behavior of special functions like ABS, SIN, COS, EXP, LOG, fractional exponentials etc. is integrated and can be evaluated if the operator <em>bounds</em> is called with rounded mode on (otherwise only algebraic evaluation rules are available). <P> <P> If <em>bounds</em> finds a singularity within an interval, the evaluation is stopped with an error message indicating the problem part of the expression. <P> <P> <P> <H3> syntax: </H3> <em>bounds</em>(<exp>,<var>=(<l> .. <u>) [,<var>=(<l> .. <u>) ...]) <P> <P> or <P> <P> <em>bounds</em>(<exp>,{<var>=(<l> .. <u>) [,<var>=(<l> .. <u>) ...]}) <P> <P> <P> <P> where <exp> is the function to be investigated, <var> are the variables of <exp>, <l> and <u> specify the area as set of <A HREF=r37_0422.html>interval</A><em>s</em>. <P> <P> <em>bounds</em>computes upper and lower bounds for the expression in the given area. An <A HREF=r37_0422.html>interval</A> is returned. <P> <P> <P> <H3> examples: </H3> <P><PRE><TT> bounds(sin x,x=(1 .. 2)); -1 .. 1 on rounded; bounds(sin x,x=(1 .. 2)); 0.84147098481 .. 1 bounds(x**2+x,x=(-0.5 .. 0.5)); - 0.25 .. 0.75 </TT></PRE><P>