Artifact ffe8ba559e52408acc605e53edcf1caec95740d55c8783c8d21f2a55ecff1496:
- Executable file
r37/packages/hephys/physop.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2732) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/packages/hephys/physop.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2732) [annotate] [blame] [check-ins using]
COMMENT test file for the PHYSOP package; % load_package physop; % Load a compiled version of the physop package. % showtime; linelength(72)$ % Example 1: Quantum Mechanics of a Dirac particle in an external % electromagnetic field VECOP P,A,K; SCALOP M; NONCOM P,A; PHYSINDEX J,L; oporder M,K,A,P; % we have to set off allfac here since otherwise there appear % spurious negative powers in the printed output off allfac; FOR ALL J,L LET COMM(P(J),A(L))=K(J)*A(L); H:= COMMUTE(P**2/(2*M),E/(4*M**2)*(P DOT A)); % showtime; %assign the corresponding value to the adjoint of H H!+ := adj H; % showtime; % note the ordering of operators in the result! % enhance the readability of the output on allfac; ON CONTRACT; H; % showtime; % Example 2: Virasoro Algebra from Conformal Field Theory operator del; % this is just a definition of a delta function for all n such that numberp n let del(n) = if n=0 then 1 else 0; scalop l; noncom l,l; state bra,ket; % commutation relation of the operator l; for all n,m let comm(l(n),l(m)) = (m-n)*l(n+m)+c/12*(m**3-m)*del(n+m)*unit; %modified 1.1 for all n let l!+(n) = l(-n); % relation for the states for all h let bra!+(h) = ket(h); for all p,q let bra(q) | ket(p) = del(p-q); for all r,h such that r < 0 or (r <2 and h=0) let l(r) | ket(h) = 0; for all r,h such that r > 0 or (r > -2 and h = 0) let bra(h) | l(r) = 0; % define a procedure to calculate V.E.V. procedure Vak(X); bra(0) | X | ket(0); % and now some calculations; MA:= adj(l(3)*l(5))*l(3)*l(5); %modified 1.1 % showtime; % here is the VEV of m vak(Ma); % showtime; % and now calculate another matrix element matel := bra(1) | ma | ket(1); %modified 1.1 % showtime; % this evaluation is incomplete so supply the missing relation for all h let l(0) | ket(h) = h*ket(h); % and reevaluate matel matel := matel; % showtime; % Example 4: some manipulations with gamma matrices to demonstrate % the use of commutators and anticommutators off allfac; vecop gamma,q; tensop sigma(2); antisymmetric sigma; noncom gamma,gamma; noncom sigma,gamma; physindex mu,nu; operator delta; for all mu,nu let anticomm(gamma(mu),gamma(nu))=2*delta(mu,nu)*unit, comm(gamma(mu),gamma(nu))=2*I*sigma(mu,nu); oporder p,q,gamma,sigma; off allfac; on anticom; (gamma dot p)*(gamma dot q); % showtime; off anticom; (gamma dot p)*(gamma dot q); % showtime; commute((gamma dot p),(gamma dot q)); % showtime; anticommute((gamma dot p),(gamma dot q)); on anticom; anticommute((gamma dot p),(gamma dot q)); % showtime; end;